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CHAPTER I

INTRODUCTION

Introduction

The modeling of seepage under dams and groundwater flow

in aquifers is of significant interest. This becomes even

more important in our modern times wih increasing interest

in the flow of pollutants. The unsulved environmental

issues regarding our hazardous and toxic waste problems must

be resolved, and significant resources must be placed on

this effort. Some military bases are contaminated with

hazardous waste that has entered the groundwater domain. A

groundwater model that takes into account contaminant flow

is therefore critical. The state of the art has advanced in

various ways over the years to achieve better and better

solutions. However, of unusual occurrence is the applica-

tion of the tools that engineers in one discipline have

developed to problems of other disciplines. What is said

is, "We don't do it that way." Because of the author's

diverse background, a unique feature of the work in this

dissertation is that the tools developed by structural and

aerospace engineers are applied to a problem typically

addressed by others.

Scope of Dissertation

This dissertation concentrates effort on the

complicated, real-world problem of seepage and groundwater

flow in three ways:

1. The development and application of new and
innovative computational techniques for a more
effective solution procedure.



2. The application of techniques and software
developed by structural and aerospace engineers to
a civil engineering problem (technology transfer).

3. The development and application of a three-
dimensional (3-D) seepage package and groundwater
model using the latest grid generation and scien-
tific visualization techniques.

More detail will now be given to the different parts.

Two-Dimensional (2-D) Improvements

A 2-D finite element method (FEM) seepage package has

been developed by the author which has three parts as

follows:

1. Interactive graphics grid generation.

2. Steady-state seepage analysis for both confined and
unconfined problems, homogeneous or inhomogeneous
media, - otropic or anisotropic soil, plane and
axisymmetric flow.

3. Interactive graphics postprocessor.

This package has been distributed worldwide and has advanced

the state of the art. Further advancements in automatic

flow net generation for a 2-D problem from the perspective

of aerospace engineering will first be presented. In fact,

the technique of using the Cauchy-Riemann equations to gen-

erate a structured orthogonal grid is extended to generate a

seepage flow net. Several examples and comparison with

other work are also presented.

Three-Dimensional Model

Next, a 3-D seepage package and groundwater model is

presented where the primary hardware configuration is the
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combination of a Cray YMP and a Silicon Graphics Iris work-

station. The individual parts will now be described.

Grid Generation

The program EAGLE (written predominantly by Dr. Joe

Thompson, Mississippi State University) has extensive capa-

bility in generating structured grids for finite volume flow

applications. Many users of FEM programs prefer structured

grids (although not required) because of their esthetics and

good numerical properties (triangular and tetrahedral ele-

ments show bias at times). Therefore, EAGLE was used as the

grid generation tool.

Conversion and Data Completion

A module to convert the output from the grid generation

program to the FEM seepage format is next described. This

includes combining data from different blocks into a single

FEM grid, and boundary condition and soil property data must

also be supplied. Finally, a bandwidth minimization algo-

rithm must be applied to the grid.

FEM Seepage Analysis

A 3-D version of the 2-D seepage analysis program is

next presented. The numerical problems in going from 2-D to

3-D are also described. Like the new 2-D seepage program,

the capabilities are:

1. No initial guess of the free surface or any
restrictions on the grid shape or numbering in the
vicinity of the free surface will be required.
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2. Layers with different soil properties are allowed.

3. The program will terminate upon convergence without
the user having to specify a specific number of
iterations or time steps.

Scientific Visualization

The new 3-D seepage program outputs data compatible

with FAST (available from NASA Ames and operational on the

Iris Workstation). The techniques to properly format the

unconfined flow data are described. Since EAGLE's grids can

be plotted with FAST, graphics capability for both prepro-

cessing and scientific visualization are supplied to the

user.

Test Problems

The developed 3-D seepage and groundwater model was

tested with both theoretically verifiable and real-world

problems. These results are presented.

Previous Work

Early attempts at modeling groundwater (Meyer and

Kleinecke 1968) assumed horizontal flow in cells of one

layer (2.5-D) with a finite difference scheme. However,

when the flow became unconfined, the problem became nonlin-

ear, and it was difficult to ensure convergence in a steady-

state problem. In fact, one significant aspect of seepage

is handling the problem of unconfined flow with a free

surface through materials of significantly different charac-

teristics (permeabilities). One example of this is an earth
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dam with a relatively impervious clay core with a highly

pervious drain installed around it. The rest of the dam is

composed of moderately porous material. Figure 1 shows an

example with the following soil properties.

Permeabilities, ft/min
Soil Material ki  k2  Angle, deg

1 Rock 9.3 (10-2) 1.7 (10-2) 140
2 Sand 9.8(10-2) 2.0(10-2) 0
3 Drain 9.8(10-2) 2.0(10 -2) 0
4 Shell 9.8(10') 9.8(101) 0
5 Random 9.8(10-) 9.8 (10) 0
6 Core 9.2(10 ) 2.0(10 ) 0
7 Random 9.8(10 ) 9.8(10 ) 0
8 Grout 9.8(103) 2.0(103) 140

A finite element analysis (FEA) (Wilson 1969,

Zienkiewicz 1971) for 2-D steady-state seepage flow for

confined or unconfined flow (Taylor and Brown 1967, Finn

1967) was developed. However, the user was required to

orient the elements where the free surface might occur in a

special way and give angles along which the free surface

should move. This was an early attempt at adaptive mesh

methods but did not work well at times. Also, this code

could not handle problems that became partially confined and

partially unconfined unless the user could pick a priori

where the break would be. Some improvement to the conver-

gence problem was made (Neuman and Witherspoon 1970). A

different approach to a finite difference solution for
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2 2

Figure 1. Earth Dam with Different Soil Properties

a transient problem of an initially dry bank (Desai 1970)

was taken, but this solution was good for only one boundary

condition and only a rectangular mesh. Later, a method of

solving the transient seepage problem using the FEM by

treating the problem as a series of steady-state problems

(France 1971) was developed. Further refinements (Issacs

and Mills 1972) to the work of France also were made by

modifying elements crossed only by the free surface rather

than "adapting" an entire set.

At this time the author developed both 2- and 3-D FEM

seepage programs (Tracy 1973a, 1973b). These programs were

used in a study of Lock & Dam 26, Alton, IL, with reasonable
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results (Hall, Tracy, and Radhakrishnan 1975). However, a

subsequent project failed where the grid was produced

manually.

It was apparent that grid generation and interactive

graphics tools were essential for the successful application

of numerical techniques to large real-world problems. Work

was then begun on a 2-D FEM grid generator and postprocessor

(Tracy 1977a, 1977b, 1977c). The grid generator had two new

capabilities as follows:

1. After the user defined points and line segments,
the program automatically put them together into
subregions. If they were four-sided subregions, a
structured algebraic grid was generated.

2. If the subregion had an arbitrary number of sides,
a triangular mesh was generated by a simple, yet
innovative, technique developed by the author.

The postprocessor could do the following for 2-D FEM output:

1. Numbers.

2. Contours.

3. Vectors.

4. Displaced grid for structures problems.

5. Isometric.

6. Perspective.

As PC's and engineering workstations became more powerful,

Apollo and IBM PC versions were created (Tracy 1988). Work

was done to plot a 3-D FEM grid (Tracy and Wade 1980), but

the work to generate a 3-D grid was left to others. That

is, in fact, one of the reasons why the unique capability of
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EAGLE (Thompson 1987, Thompson and Gatlin 1988a, 1988b,

1988c) is used in the work documented by this dissertation.

The seepage programs developed at this point have some

serious limitations:

1. The scheme to do a steady-state problem by allowing
the transient problem to converge with a constant
time increment is very slow.

2. When, as shown in Figure 2, the free surface
crosses the grid, small and therefore sometimes
skewed elements just below the free surface are
created.

3. With materials with significantly different
permeabilities, a time step good for one layer is
totally wrong for the others.

4. An initial guess of the free surface is required.

5. The elements where the free surface would
potentially go have to be quadrilaterals numbered
in a certain way, destroying one of the major
features of the FEM.

3 6 9

PH4AEA1C

2 URF CE2 a

7 7

ORIGINAL GRIO MODIFIED GRID

Figure 2. FEM Grid with Free Surface

A new approach where the elements above the free surface are

given a very low permeability (Bathe and Khashgoftaar 1979)
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was developed which alleviated many of these problems.

There is one boundary condition (at the exit point) which

was approximated in the work of Bathe and is very difficult

to handle. A modified version of Bathe's work with a

correct version of exit point boundary conditions (Tracy

1983) was done next. This program was later put into the

above-mentioned 2-D seepage package (Biedenharn and Tracy

1987) with the pre- and postprocessor programs. The last

improvement is work on the addition of a flow net option

(Tracy and Radhakrishnan 1989) which is described in this

dissertation with a new aerospace engineering perspective.
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CHAPTER II

GOVERNING EQUATIONS

Flow Equations

The equation for unsteady unconfined flow of a com-

pressible fluid in an initially dry compressible porous

medium (DeWiest 1966) such as in the earth dam shown in

Figure 3 with headwater level HH(t) and tail water level

z

~Y

_, .i - 7 -7,

,\\,\,\

Figure 3. Earth Dam

HT(t) can be expressed as follows:

a(pu) + a(pv) + a(pw) + a(pn) - 0 (2.1)
ax ay az at
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where

p = mass density of the fluid

u, v, w = discharge velocities in the x, y, and z
directions, respectively

n = porosity (ratio of the volume of voids to the
total volume)

t = time

The actual velocities of the 2P.tid particles are related to

the discharge velocities by

Sj= 1, 2, 3 (2.2)

n

where

uj = jth component of the actual velocity of the water
particles

v. = jth component of discharge velocity (u, v, or w)

Further, the concentration of the water in the soil-water

complex can be measured by a density Q defined by

Q = np (2.3)

Equations 2.2 anc 2.3 can now be substituted into Equation

2.1 to yield the conservation of mass equation (Anderson,

Tannehill, and Pletcher 1984) used by the aerospace engi-

neers as follows:

a o(Qoj) o = 0 (2.4)

where

x. = x, y, or z

This equation can be written in vector form by
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(~i) +at

where 6 is the velocity vector. In like manner,

Equation 2.1 can be written

- 0) + a(pn) = 0at

where t is the discharge velocity vector. If the soil-water

complex is assumed incompressible, p is constant. Also, &

more general equation can be stated for either confined or

unconfined flow. The above two steps yield

V" +Ss~h - =0at

where

Ss = specific storage

h = total head or potential

Darcy's Law (Maasland 1957) for laminar flow for discharge

velocity is given by

V= - KVh (2.5)

where K is a 3 X 3 permeability tensor. So now the equation

for unsteady flow becomes

V (K.Vh) =Sh (2.6)at

Steady-State Solution

Because this work solves the difficult problem of 3-D

unconfined flow with no restriction on the grid, automatic
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flow net generation, and building a working and tested tool

for use by industry and federal installations, it concen-

trates on a steady-state solution. If a steady-state solu-

tion is approached from solving a nonlinear equation, then

the following equation is used.

V (K Vh) = 0 (2.7)

Finally, in the special case where a homogeneous, isotropic

medium is modeled, the total head satisfies Laplace's

Equation,

V2h = 0 (2.8)

Equation 2.8 will be used to generate a flow net for 2-D

problems.
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CHAPTER III

COMPUTER GENERATED FLOW NETS

Introduction

The graphical construction of flow nets by hand to

compute the quantity of flow, exit gradient, etc. is a stan-

dard engineering tool of soils engineers. However, these

are extremely tedious to construct by hand because equipo-

tential lines and flow lines must be drawn in such a way

that curvilinear squares result. One significant aspect of

this research effort is that numerical grid generation tech-

niques of aerospace engineers used to generate an orthogonal

grid (Thompson, Warsi, and Mastin 1985) can be extended to

construct a flow net for various boundary conditions using

the Cauchy-Riemann Equations (Crowder and McCuskey 1964).

This chapter shows how the FEM has been successfully applied

to generate flow nets with emphasis also given to differ-

ences in approach from previous work. The major advantage

of the techniques described in this chapter is that they

improve the quality of the resulting flow nets.
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Governing Equations and Basic Approach

The total head or potential 0 for a homogeneous,

isotropic medium for 2-D, steady-state flow (as already

shown by Equation 2.8) satisfies Laplace's equation as

follows:

_ + _ - 0 (3.1)
ax 2  ay 2

The stream function * also satisfies Laplace's Equation,

+ , a = 0 (3 .2 )

ax 2  ay2

Therefore, a complex potential t exists as follows:

)= + i *

Since ' and * are conjugate harmonic functions, the Cauchy-

Riemann equations now hold.

4 = a* or (k , =  * ,
ax ay

(3.3)

ay ax or

It should be noted here that the stream function is often

defined as a velocity-type term. However, in this work it

is a gradient-type term. That is, * is defined by

f C 0,dy - 43,dx

as compared to

Sudy- vdx
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A property of such functions is that constant lines of

0 are orthogonal to constant lines of *. The flow net con-

sists of p = constant lines and * = constant lines

constructed in such a way that the resulting picture con-

sists of curvilinear squares. The concept of automatically

generating the flow net is fairly straightforward and

involves the following three steps:

1. Perform a normal FEM solution determining the total
head h (same as potential 0) at each node and the
quantity of flow, Q, passing through the system.
Also compute the shape factor, f, from

Q = k(h u - hd) f (3.4)

where hu is the upstream head, hd is the downstream
head, k is the permeability, Q is the flow, and f
is the shape factor.

2. Determine the boundary conditions for the stream
function and perform a second FEM solution to
obtain values of * at each node.

3. Contour the two sets of data to construct the flow
net. The intervals for each are determined using
the shape factor which, by definition, is

f _
Ne

where Ne is the number of equipotential drops, and
Nf is the number of flow paths.

Earlier work (Christian 1980a, 1980b, 1983; Aalto 1984;

Christian 1987) determined the boundary values for the

stream function solution (step 2) numerically, whereas in

this work a more fundamental technique is used. Here, the
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Cauchy-Riemann equations are used to determine the correct

boundary conditions.

Modified Cauchy-Riemann Conditions

A modified form of Equation 3.3 will be applied to

determine the boundary conditions for the stream-function

computation (step 2). On the boundary, a tangent-normal

(T-N) coordinate system is used as illustrated in Figure 4.

It is created by first constructing a parallel coordinate

system x' - y' at the

y

0

N T

A

0x, Y0)

x
Figure 4. Tangent-Normal System

boundary point (xo, yo) and then rotating the prime system

an angle A. The local and global coordinate systems are

related by:

17



X :=X - X

/ = Y -Yo

and the tangent-normal coordinate system is related to the

x' - y' system by:

T Cs A sin A

-sin A cos A,

where A is the angle between the two axes. Therefore,

4)TJ) C os A sinA)(4X
k-sinA, )(3.4)

,4N -sin A cos A])(y]

*T) (cos A sin A) (41x)

l,-Sfl )(3.5)
*N -sin A cos A,) *y)

where

aT T aT

aN aN

Applying Equation 3.3 to Equation 3.5 yields

(2 -sin coA )(s A4
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Collecting terms gives

* cos A sin A ((

-'IPT) -sin A cos AJ 3y)

Since the right-hand side of Equations 3.4 and 3.6 are the

same, the left-hand sides can be equated to obtain

(3.7)

4)N = -T

Equation 3.7 can now be used to solve for the boundary con-

ditions for the stream function.

Examples

Several examples will now be presented to illustrate

the procedure.

Four-Sided Degions

Two problems showing examples of the basic four-sided

region are now given. They are flow under a weir and two

versions of flow in a partially penetrating slot.

Confined Flow under a Weir

This simple problem (Figure 5) clearly demonstrates the

concepts presented in this chapter. Note that there are

four boundaries, with constant head specified on two lines

(segments AFE and BCD) and a no-flow (impervious) condition

specified on the other two lines (segments AB and ED).

19



- F E. "M 1'"I 0'

I "

Figure 5. Weir Problem

On the = H, and = 2 boundaries (AFE and BCD)

4 = 0

since Hi and H2 are constants. But from Equation 3.7 we get

So the new boundary condition is

*= 0

On the impervious boundaries no flow enters, so the

normal component of velocity, vN, is zero. Thus, using

Darcy's Law for a homogeneous, isotropic medium,

v,= -ke = 0

it follows that

( N = 0

Applying Equation 3.7 to the above equation yields
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or

*Tr = 0 (3.8)

Now

dr = *T dT + * N d'V (3.9)

Substituting Equation 3.8 into the above equation and noting

that dN = 0 on the boundary gives

d*=0

or

= constant (3.10)

The total amount of stream function can be shown to be

- f(h u - hd)

Thus for the impervious boundaries (using Equation 3.10),

set

l =111i= 0 on AB

'= 12 = *total on ED

(In the actual computer program, a constant is added to *1

and *,2 so their values will be higher than the maximum y

value of the grid to keep the FE program from solving an

unconfined flow problem.)

Notice that the boundary conditions are exactly

reversed. The impervious boundary in the first problem is
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replaced as a constant head boundary, and a constant head

boundary has been replaced as a no-flow or impervious

boundary.

A wide variety of problems involving four-sided regions

can be handled by the concept demonstrated here. The first

example is given in Figure 6 where a weir similar to the one

of Figure 5, but with sheet piles added, is shown (BC = AJ =

40 ft, DE = GH = 10 ft, CD = IJ = 30 ft, and FG = 40 ft).

Figure 7 shows the computer generated flow net for this

problem. The sheet piles remain part of the one continuous

impervious boundary (DEFGHI in Figure 6). Points D and F

have the same (x, y) coordinates as do points G and I.

I G FID

EHH

A 1 , , , , , , , B

Figure 6. Weir Problem with Sheet Piles

Partially Penetrating Slot

The second example is confined flow through a partially

penetrating slot. Both the case of specified head and

specified constant discharge velocity at the slot are

considered.
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Figure 7. Flow Net for Weir Problem

Head specified at the slot

Figure 8 shows that head or potential is specified at

two boundaries (at the headwater level on BC and at the slot

along DEF), and the other two boundaries are impervious

(along the center line and base FAB and the top CD). Since

this problem is topologically identical to the weir problem,

no further work is needed to solve it.

H2 1

Figure 8. Partially Penetrating Slot

Constant discharge velocity

specified at the slot

This version of the slot problem consists of constant

discharge velocity specified on one of the four boundaries,

a constant head on one boundary, and impervious conditions
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on the other two (Figure 9). Line segments EAB and DC are

vol
E£ H,

A -7

Figure 9. Specified Discharge Velocity

impervious, line segment BC has constant head HI specified,

and line segment DE has a specified discharge velocity, Vo.

On the = Hi boundary, use as before,

* = 0

On the boundary DE,

vN = - kN = v.

or

k

Equation 3.7 can again be applied to obtain

VCV = -*T = ---T

VO-

N YT k

Starting again with Equation 3.9,

d* = T dT+ *NdN
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and observing that dN = 0 on the boundary again gives

d* = V° dT
k

Integrating,

-kT + c
k

where c is a constant to be evaluated. In this particular

problem y coincides with T along DE, so

V o

Let

E= at y = YE

then

C E - V- YE

and

V o

4= -- (Y- YE) + E
k

Now, on the impervious boundaries, apply the i =

constant boundary condition as follows:

4  E on EAB

=41'D on CD

where *, is computed by
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_ Vo

-D T-(YD - YE) + *E

The boundary conditions for the stream-function solution

are now completely defined.

Dupuit's Problem

Dupuit's problem deals with unconfined flow in an earth

dam with vertical sides (Figure 10). Line segment AB is

impervious, line segments AF and BC have constant head spec-

ified, and line segment CD has the boundary condition

The position of the free surface (FD) must be determined

from the FEM solution. Once determined, line segment FD

becomes a flow line and is treated exactly like an impervi-

ous boundary. Alzo, the region above the free surface

- E

HI

DtI

A , , - . B

Figure 10. Dupuit's Problem

26



(triangular region FDE) is not used for the second solution.

Rather, a new grid with the phreatic surface being a new

boundary is used. We will now determine the * boundary

conditions.

On the = I and = H 2 boundaries use, as before,

* = 0

On the impervious boundaries apply the i = constant boundary

condition as follows:

on A-

*= W1 + *,I on FD

On the boundary CD,

This, however, is insufficient information to determine the

new boundary conditions. Therefore, the normal component of

discharge velocity vN is first computed for each node on the

boundary CD. It is assumed that points C and D are node

points, and there are typically intermediate node points

such aq nodes I and J in Figure 10 as well. Then for each

node,

vN -k4lN

(PN 1 - T

VN

k
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It is further assumed that vN (and therefore *T) varies

linearly between node points. So between two node points I

and J having * values of *, and *j and *T values of *TI and

*TJ' I . is approximated as

*T = *J- WTI) (T - TI) + *VTx
Tj - T,

Integrating as before gives

1 (ITJ - *TI) (T - TI) 2  + g (T- T) + 4
2 Tj- T I

Solving for ij gives

= 1 (*TiJ + 'ITJ) (Tj - Tr) + 14r

The first set of node points starts with point I corre-

sponding to point D (Figure 10). Thus,

Also, using

*T=VN -k

(since VN is zero all along the flow line FD), begin with

WTI = 0

Point D, being the exit point, causes significant numerical

problems (to be discussed in Chapter IV). With this start

and the values of VN computed for all the remaining nodes on
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the surface of seepage from the FEM solution, the nodes

along DC can now be processed consecutively until the tail-

water point C is processed. The boundary conditions are now

fully determined for the stream-function calculation. Note

that the only restriction on i1 is that it be large enough

to prevent the FEM analysis program from solving an uncon-

fined flow problem while solving for the stream function.

The above formulation is not restricted to Dupuit's

Problem but can also be applied to a wide variety of quadri-

lateral-type earth dams. The only restriction is that the

problem should have the five basic boundaries of imper-'ious

base, specified headwater and tailwater, free surface, and

surface of seepage. Figure 11 shows the results for

Dupuit's Problem where by Figure 10, AB = AF = 100 ft, and

BC = 20 ft. Figure 12 shows the computer generated flow net

for an earth dam.

Figure 11. Results for Dupuit's Problem
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Figure 12. Earth Dam Problem

Anisotropic Soil

Flow nets for an anisotropic soil can be produced

equally well for one layer with this technique. The number

of flow lines and equipotential lines is computed the same

way as with the isotropic case. However, the resulting plot

will now have curvilinear quadrilaterals instead of curvi-

linear squares. To get curvilinear squares, the geometry

and permeability must be transformed in the traditional way

as follows:

x=x

X, = x

ykH
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k' = k--)v

where kH and k are the horizontal and vertical perme-

abilities, respectively. If the principal permeabilities

are not coincident with the x-y axis, x and y must represent

a rotated coordinate system in the equations, except that

now kH and kV are more properly rendered ki and k 2.

Figure 13 shows an anisotropic problem consisting of a weir

Figure1. We on AnstopcSi

with "shee pie" n a"loi irvious-- botm Note :"' ::

tha te principalo permbi•tie ar no paale o the

y axis-. Figur14shwsth flownetif t-

900 ,?rfkq ouski - I/ x 10 3 CM/SEC

Figure 13. Weir on Anisotropic Soil

with a sheet pile and a sloping impervious bottom. Note

that the principal permeabilities are not parallel to the

x-y axis. Figure 14 shows the flow net if the soil is as-

sumed isotropic, and Figure 15 shows the results for the

anisotropic case.
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Figure 14. Isotropic Results

Figure 15. Anisotropic Results

Multilayered Problems

Multilayered problems where all the flow lines origi-

nate or end in the same material type can also be solved.

To understand how, first consider the two-layered system

shown in Figure 16. The procedure is done the same as the

single-layered case except that in the second solution for

flow lines the permeabilities are modified. The reason is

that when an equipotential or flow line crosses a boundary

between materials of different permeabilities, it is bent.
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f low line

Figure 16. Flow across Boundary

However, since both regions are isotropic, the flow lines

must remain perpendicular to the equipotential lines on both

sides of the boundary. Flow lines are bent as follows

(Freeze and Cherry 1979) (Figure 16):

tan 01 k i  (3.11)

tan 02 k 2

In a similar manner, since equipotential lines are perpen-

dicular to flow lines, equipotential lines are bent as

follows:

tan (- - eel)
2 k1

tan ( - a) k2
2

or

cot a1 _k i

cot a2  k 2

Finally, taking the reciprocal of both sides gives
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tan a, _ k 2  (3.12)
tan a 2  (1

When the second FEM solution is completed, the program

treats the flow lines as equipotential lines. Therefore,

the flow lines are bent according to Equation 3.12 instead

of Equation 3.11. To compensate for this, the ratios of

permeability must be reversed. This can be accomplished,

for instance, by reversing k, and k2. For a multilayered

problem, however, it is best to replace the k's with their

reciprocals, respectively. Thus, the ratio of k's between

material types 1 and 2 becomes

k, k

Between materials 2 and 3 it becomes

3 k  3 k2
1~l k3

This enables the procedure to work for any number of layers.

Figure 17 shows a three-layered problem with the divid-

ing line between the layers being equidistant, and Figure 18

shows the computer generated results. Since the problem has

isotropic soil layers, the equipotentials and flow lines

remain perpendicular to each other. However, in one layer
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Figure 17. Three-Layered Problem

there will remain curvilinear squares, and in the other two

layers there will be curvilinear rectangles.

Axisymmetric Case

The flow net as traditionally defined (a plot of equal

potential drops and equal flow paths constructed in such a

way as to produce curvilinear squares) does not exist for an

axisymmetric problem (Figure 19 shows the result for a fully

penetrating well which has a well radius of 1 ft, a radius

of influence of 51 ft, a depth of 20 ft, and a permeability
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Figure 18. Results for Three-Layered Problem

Figure 19. Fully Penetrating Well "Flow Net"
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of 0.1 ft/min.). Notice that tall, thin rectangles become

short and fat proceeding from the well outward. No addition

or subtraction of flow lines can change this situation. The

technique outlined in this chapter can be used to produce a

plot showing mutually perpendicular equipotential and flow

lines, but the number of each is arbitrary.

Comparison with Other Work

Two problems presented by Christian were dealt with

using the techniques presented in this chapter and the

results compared. The first problem is confined flow in an

anisotropic medium as shown in Figure 20. Figure 20 also

shows Christian's results with the author's results in

Figure 21. Note that the results are the same. A more

d*ficult problem is unconfined flow through a two-zoned

earth dam with k. = 2 kA. The problem and Christian's

results are shown in Figure 22, and the author's results are

shown in Figure 23. With curvilinear squares in Region A,

curvilinear rectangles of size 2 to 1 should occur in

Region B. Note that the results by the author are much

closer to this result. Also, due to numerical complexities

at the exit point that the author avoids, an extra wiggle

occurs in Christian's work near the exit point. Clearly,

the more fundamental approach generates a superior product.
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CONTOUR INTERVAL - 1.000
o MAXIMUM . 12.000
O MINIMUM . .0

, CONTOUR INTERVAL - 2.0000
o MAXIMUM w 15.655
0. MINIMUM , .0

KI = 4K 2

0 1 2 -K S .

Figure 20. Confined Flow in an Anisotropic Medium

Figure 21. Author's Results
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CONTOUR INTERVAL - !0.000
O3 MAXIMUM - 85.000
0' MINIMUM . .0

'CONTOUR INTERVAL - 10.000
0 MAXIMUM - 41.826
0 MINIMUM - .0

Figure 22. Unconfined Flow through Two-Zoned Dam

Figure 23. Author's Results

39



CHAPTER IV

THREE-DIMENSIONAL NUMERICS

Introduction

The goal of this work is to allow a completely general

3-D FE grid for both confined and unconfined flow problems.

Further, the user is not to be required to make an initial

guess of free surface areas or be concerned about the number

of iterations required for convergence. The advantage of

this approach is that a totally structured grid, partially

structured and partially unstructured grid, or totally

unstructured grid can be used. However, going from 2- to

3-D is significant. For example, in a 2-D unconfined flow

problem there is typically one exit point to cause computa-

tional problems. In a 3-D problem there is an exit line

instead of an exit point, and there can be any number of

them. One example is an aquifer or cofferdam with several

wells. The numerics involved in the 3-D solution will now

be discussed.

Finite Volume versus Finite Element Comparison

An unusual approach will be used to introduce the FE

formulation. Typically, a variational approach is used to

derive the governing FEM equations. This works very well
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and is at times physically based such as in structures prob-

lems where the principle of virtual work in variational form

can be used. What will be done here, however, is to first

compare finite volume and FEM by considering one-

dimensional (l-D), steady-state seepage flow in the region

shown in Figure 24 with three finite volume cells having

dimensions of Ax by Ay by 1.

i-1 i i+1

Figure 24. One-Dimensional Seepage Flow

First, putting Equation 2.5 back into Equation 2.7

gives

0 (4.1)

Integrating finite volume i over its volume gives

fV Vdv = o

Using the Divergence Theorem produces

41



S -ds = 0

Since flow is horizontal, only the two vertical boundaries

have flux. So the equation can be approximated by

ui.1 Ay - ui_ Ay = 0 (4.2)
2 2

The 1-D version of Equation 2.5 for homogeneous, isotropic

flow is

u - k dh
dx

Using a linear version of Richardson's Interpolation and

gathering information on either side of the boundary

produces the standard approximation at the boundaries of

- hi+1  - h i

2Ax

h i - hi 1UI. 1 - _ _ _

2 Ax

The above series of equations can be substituted in

Equation 4.2 to obtain

-k h ' 1 - h 'Ay + k h i - h i - 1 Ay = 0
Ax Ax

When terms are collected, one obtains

kAy (h i - 2hi + hi 1 ) = 0 (4.3)
AX ,

The term in parenthesis is the familiar central difference

formulation for the second derivative in computational

space.
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Now the same problem can be considered by using the

direct stiffness approach of the FEM (Figure 25). The three

cells are now three finite elements with eight nodes. Since

the flow is horizontal, nodes 1 and 5, 2 and 6, 3 and 7, and

4 and 8, respectively, have the same head. Therefore,

nodes 5 through 8 are considered inactive. A structures

5 6 7 8

1 2 3

1 2 3 4

Figure 25. FEM Version

problem will relate forces and displacements by use of

Hook's Law via a stiffness matrix as follows:

{F} = [K] {u}

where

(F) = nodal forces

[K] = stiffness matrix

(u) = are the nodal displacements

In an analogous manner, in seepage the nodal flows (Q) are

linked to nodal heads as follows:
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{Q} = [LI {h}

Let us now look at element 1. x varies inside the

element as follows:

l-~ ___

2 2

= Nx + N2x 2

where

The vector form is

x N}{N {x}, (4.4)

where (N) is a vector of shape functions and {x)e are the

nodal x coordinates for an element. Since nodes 1 and 2 are

the only active nodes for element 1, let h vary the same as

x in Equation 4.4. Therefore,

h = {N} T {h}e (4.5)

where (h)e are the nodal heads for an element. Thus, the

isoparametric element formulation (Cook 1981) has been used.

The nodal flows are simply the flux (volume of water

per unit time) crossing at that node, so in this case,

Q= uAy

But

u = -ki
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where the gradient i is in this case

i dh

So

i d[N}T {h} e
dx

-d d {N} h)
cix d hl

From the definitions,

(P] -d{N}

T

'T dx

we get

.1 = J-1 [P] {h},

Our goal here is to obtain a matrix [B] so that

i= [B] {h}e (4.6)

We see from these equations that

[B] = J-1 P] (4.7)

In our 1-D example

JT 1 (x2 -xI) = 2X
22

[P] =1-1 1]
2
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[B] = -L [-1 11

Ax

The discharge velocity can now be computed as

u = -k[B] {h}6  (4.8)

which becomes a simple constant in the 1-D problem as

follows:

k (h i - h 2 )

Our goal is to determine the element stiffness matrix

(K]e relating the nodal Q's to the nodal h's. The sign

convention used for flow entering the element is positive

and for flow exiting the element is negative. Thus,

Q, = kAY(h, -h2)
Ax

kay (h 2 - h )
Ax

or

kA

(QJ kA X' jJhi

So from the definition

to), = [K]e{h}e (4.9)

we get
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[K] e kAYL1 i
This can be written

1 -11 [k ] - -(-1 1)
[K] e AX AxAy

The above equation can also be written

[ Ke = [B] T [k] [B] AxAy

So our final goal is reached, which is to have an intuitive

basis for the general expression of the element stiffness

matrix, which is

[K]e f [B]T [k] [B] dV (4.10)

where now [k] is the matrix version of the general perme-

ability tensor.

General Finite Element Method Formulation

We are now ready to discuss the general FEM equations

and techniques for the seepage problem.

Element Formulation

The different aspects of the individual element formu-

lation will now be discussed.
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Element Shape

To conform to the output from EAGLE, as well as add a

quadratic variation in the interpolation function, a nine-

node element is used. As shown in Figure 26, this becomes

an eight-node "brick" element with an internal node having

coordinate values

8

16

Figure 26. Finite Element Type

8

5 :
87

" 9 "

= i~ (4.11)x9 8 i~

48



Unstructured grids are accomplished by nodes collapsing to

form prisms, tetrahedrons, etc. as shown in Figure 27.

Figure 27. Other Shapes

Isoparametric Element

The general versions of Equations 4.4 and 4.5 will now

be given. First, the general finite element of Figure 26 is

mapped to a 2- by 2- by 2-unit cube in ( , 7, )

computational type space, where

I Ii 3 I
The values of , 7, and z at the corner nodes are either -1

or 1, and (0, 0, 0) at node 9. The ith interpolation func-

tion Ni for values of i from 1 to 8 becomes
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1

Ni = -1 (1 + E) (1 + r1riq) (1 + CjC) (4.12)
' 8

where (Ei, i , C,) are the (E, 77, C) coordinates at point i.

The interpolation function at point 9 is

N9 = (I - &2) (1 - 12) (1 - ( 2 ) (4.13)

Now h is interpolated by

8

h = Nih i + Ngh (4.14)
1=9

where

8

h9 = h 9 - h (4.15)

so that the matrix version again becomes as in Equation 4.5,

h = {N} T{h}e

Because (r)9 , where

{r} =[]

is defined at the average point of the element, (r)' at node

9 is zero. So,

8
{r} l~~~

A matrix form for this equation is
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tNIT (01O} T'X

J {0} T  {N}T {0}T

In these equations,

h2  X2 Y2 z2
h3 X3 Y3 z3
h4 X4 }4 z4

{h}e = h5  {x} e =x5 {Y}e Y 5  {ZIe= Z 5

h6 X6 Y6 Z 6

127 X7 Y7 Z?

h8 X8 YB z[

hj0 0 0

Also, {0) is a zero vector. Let the above equation for (r)

be written as

{r} = [NJ [r]e

where

({N}T  {0}T {0I7 fXI
[N] = j{oI T  {N} T  {0}T [r] = {Y)

{o}T {OJT tN}T {z}

Stiffness Matrix Formulation

The element stiffness matrix as given in Equation 4.10

is now derived. First, the general equation for the gradi-

ent is
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U1} = Vh V{N}T{h~e

So from Equation 4.6,

[B] =V{N} T (4.16)

Now we will use the operators

a)a

a a
az ac

to determine [B]. First, the Jacobian Matrix [J] is defined

by

IT ac~ , 'z)

This can also be written

[J] V{r} T

-V, ([N] r e

Expanding,

[j] = V'({N) T {X)e fN~~ {NJ T{Zl)

=V'{N}T({X~e {Yle {Zle)

The matrix,

[p] V,{N (4.17)

has only F.,rand C variables, so it can be easily eval-

uated. Tnere fore,
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[0'] = (P] ({X}e {Y}e {z}e) (4.18)

Next, using the chain rule of differentiation,

V, = [J]V

For elements that are not skewed or ill-conditioned, [J] is

well defined. Therefore,

V = [0] 1V'

[B] then becomes

[B] = [ -] V'{N}T

Using Equation 4.17 we get

[B] = [J]-[P] (4.19)

CB] is now completely defined in terms of constants and

computational coordinates.

The element stiffness matrix as given in Equation 4.10

can now be evaluated by intpgrating in computational space

as follows:

[K] f BI k] [B] 1,7 d dndC (4.20)

Numerical Integration

Fquation 4.20 must be integrated numerically by a Gauss

Quadrature formula as shown:
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S= f f ( , n, () d dn dC

n n n

i=1 j=1 k=1

n is a specified integer, and from this choice the w's and

(E i H 70k) 's are set. n = 2 integrates a cubic equation

exactly, and this typically gives enough accuracy. However,

n = 4 is used in the stiffness matrix computations because

of the special needs of the unconfined flow algorithm dis-

cussed later.

Decomposition

The 9 by 9 stiffness matrix is next reduced to an

8 by 8 matrix by eliminating terms related to the ninth or

internal node. This is done by partitioning the 9 by 9

equation,

[K g{h} 9 = {Q} 9

as follows:

{KIo K9 h9 0

Here Q9 = 0 because no flow is considered to enter at the

internal node. This matrix equation represents two equa-

tions where the second one can be solved for h9 and substi-

tuted into the first one. This gives

54



h 9  - { K}[{h}8

and

([K] 8 - ~--{K}8 {K}) {h} = {Q}8

So the actual stiffness matrix [K]a used for further compu-

tations is

[Kia = [K]s 1 -3 9{K}8 {K}8 (4.21)

Discharge Velocity

The discharge velocity (v) for each element can be

computed by t .e general version of Equation 4.8 as follows:

{v} = -[k] [B] {h}e (4.22)

For the element type used in this application, discharge

velocity is typically computed at the (E, n, C) = (0, 0, 0)

point which is close to the centroid of the element. The

element discharge velocity (v) 0 at this point thus becomes

{v}0 = -[k] [B]o{h}e (4.23)

where [B]0 is the [B] matrix evaluated at ( , r, C) = (0, 0,

0).

Assemblage with Boundary Conditions

With the element stiffness matrices computed, one can

now assemble a global set of equations
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[KIG{h}G = Q}G (4.24)

(h), is the set of global heads at the active nodes that

must be computed. If the boundary condition of specified

head is applied to a node, it is not active because head is

already known. [K]G is computed by assembling the element

stiffness matrices taking into account the active nodes as

follows:

NH

[K] = [K] ai
1=1

where N is the number of elements and [K]ai is the ith ele-

ment stiffness matrix as given in Equation 4.21.

(Q)G is the combination of specified flows at nodes

plus those computed from a specified normal discharge velo-

city vN. Let (Q)4 be flows computed at four nodes of a face

of an element in (E, ?7) computational space where v. is

applied. Also, let the shape functions (N)4 now be given by

N 1  1(1 + EjE) (1 + ll-9) i = 1, 2, 3, 4
4

Then

=0}4 f 1f VN E - 2 N' 4 d dy) (4.25)
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where

E- ar} T a{}
a& aE

a{rl a{r}F- a

G a{r}T a{ra an

Now (r) depends only on four nodes on th. surface. Let

these (x, y, z) coordinates be designated by {x) 4, {y} 4 , and

{z} 4, respectively. Then (r) is simply

{r} = [N]4[r]4

where

4 {04 4 ({x}4IO T (N T j :l)}4
[N]4 = {04 {N}4 40} [r]4  4

I T (O T {N} T f{Z}4
{0} {0}4

Also, (014 is a zero vector of length 4. The expressions

for E, F, and G are now easily evaluated. For instance

T[a[N]E Ta[IN 4 " [r)]S t4 a aF

All the terms in Equation 4.25 can now be evaluated, so the

expression can be numerically integrated as before. Once

the (Q)4 are computed, they are assembled into the global Q

vector {Q}G"

All is now ready to solve Equation 4.24 for the unknown

heads {h)G . This is a symmetric banded system of simulta-

neous, linear equations that can now be solved. Once
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the heads are known for each node the discharge velocities

can be computed for each element using Equation 4.22. If

the problem is a confined flow problem, the solution is now

complete. However, for an unconfined flow problem this

represents only the initial iteration. Details regarding

unconfined flow problems are given next.

Unconfined Flow Problem

The unconfined flow problem requires an iterative pro-

cess to determine a solution because of the free surface

being unknown. We will now examine this problem in detail.

Description of the Problem

To see the complexity in two dimensions, consider the

earth dam shown in Figure 28. Line segment DG is the free

surface that is unknown. The exit point is point G, and

segment GH is the surface of seepage. Notice that point G

does not necessarily coincide with point H where the tail

water starts. Line segment BCD is an equipotential line,

E Fv D

BG

/7 ,/ , / / /* , ,., /* , / / / / 7" 7 .,

Figure 28. Unconfined Flow Problem
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and since DG is a flow line at steady-state conditions, DG

is perpendicular to BCD at D. HIJ is an equipotential line,

and DEFG is removed from the problem. Points A and B are

moved far enough left to where the effects of the dam are

not felt, and the same is done to points J and K, except

they are moved far to the right.

The exit point becomes an exit line in three dimen-

sions. Further, in an aquifer with wells, there are any

number of independent tailwater levels, exit lines, and

surfaces of seepage. Nevertheless, it is the goal of this

dissertation to allow the user to solve all these problems

without restriction of grid. It is also extremely tedious

to have to give an initial guess of the free surface, espe-

cially when there could be any number of them in 3-D, so no

initial guess is to be required.

Geometric Considerations

Figure 29 shows a portion of an FEM grid with the free

surface ABCDE cutting through it. Point A is at the head-

water level, and point F is at the tailwater level.

Reshaped Elements

First, the free surface cuts the grid so that some

elements are completely out of the problem after a few iter-

ations, and others have new shapes. Some become very small

or skewed, while others have five sides. In three dimen-

sions these different cases become even more complicated.
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A qB

E

F
Figure 29. FEM Grid with Free Surface

Clearly, an adaptive grid scheme or another procedure is

more advantageous.

Exit Point

The exit point E also causes a problem. Points B, C,

and D can be considered to have no flow entering at these

points since the free surface is a flow line. Pievious work

has also given this no-flow condition to the exit point E.

This, however, is incorrect, and if done this way, leads to

a wrong exit point. To understand, consider Figure 30 where

the arrows show the direction of flow. Flow is lumped at a

node by attributing to that node the flow in the vicinity of

that node. Although no flow is added to point E from the

top, there is definitely some flow from the surface of seep-

age part below the node. This situation becomes even more

complex in three dimensions. Clearly, it would be better to
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E

Figure 30. Exit Point E

find an algorithm that completely avoids these problems, at

least during the iteration process.

Computational Procedure

After trying several algorithms, the one best fulfill-

ing the goals of this dissertation is now outlined:

1. Compute and store [K]aO for each element.

2. Assemble [K]u and (K]GO.

3. Solve [K]GO(h)GO = (Q)G0 for (h).GO

4. Compute {Q)u = [K]u(h)GO

For j = 1, 2, 3, ...

5. Check for convergence.

6. Compute [K]a j for each element.

7. Compute (AQ),, = [K]aj(h)ejI and assemble

8. Compute different global stiffness matrix

9. Solve [K]GIJ(Ah)G j = -(AQ)Gj for (Ah)Gj.

10. Update (h)Gj = (h)G,j.l + (Ah)Gj.
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End j

11. Compute the final position of the free surface.

12. Compute the final element discharge velocities.

Each part will now be described in detail.

Compute and Store [K], for Each Element

The first thing that is done is to compute the stiff-

ness matrices for each element. Although possibly modified

in subsequent iterations, the initial material properties

(permeabilities) are used here. The element stiffness

matrices are stored and used later in the iteration process.

Assemble [K]u and [K]G

The unmodified stiffness matrix [K]u is assembled by

using both active and inactive nodes in the assemblage pro-

cess. Another way of saying this is that the boundary con-

ditions are not considered. [K]GO is determined by either

assembling the global stiffness matrix using only active

nodes (those where heads are not specified) or modifying

[K], for boundary conditions.

Solve [K]G4h)G, = (Q}G for {h)G

This is a standard system of banded, simultaneous,

linear equations that are solved for the heads at each node.
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Compute {Q)u = [K]uh}G

The flows at internal nodes are typically zero. One

exception is when a source or sink is specified. The nodes

where flow is specified will give the same answer. The

nodes where head is specified will have their unknown flows

computed by this operation.

Check for Convergence

The basic idea is to iterate until the free surface has

stopped moving. Various criteria can be used to accomplish

this with the one that proved best being now presented.

First, compute a small number E,

e = 0.001(Zm x - Zmin)

where z X is the maximum z, and Zmin is the minimum z. Next,

compute the maximum change in head for this iteration for

all nodes that are still in the flow region as follows:

Aha x = MAX I({Ah}G, 7 )j
i

where i is the ith eligible node. When

Ahmax S e

for two straight iterations, the solution has converged.

The reason two iterations are used is that for some rare

problems the criteria must be applied twice in a row to

achieve true convergence. Otherwise, false convergence

occurs after two or three iterations.
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Compute [K]aJ for Each Element

As shown in Figure 29, the free surface is above some

elements, goes through others, and is completely below yet

others. For elements that are completely inside the flow

region, [K]aj is read from the disc and used as is. For

those completely above the region, the strategy of using a

reduced element stiffness matrix is used. This can be

either in steps or all at once. The reduction factor of

0.001 is used here. This is equivalent approximately to

saying that no flow is in the element. Figure 31 shows a

2-D example of what is done for elements where the free

* 0

Figure 31. Free Surface through 2-D Element

surface crosses the element when two interpolation points in

each direction are used. Basically, the numerical integra-

tion process in this case involves integrating over a dis-

continuity. The pressure head is computed at each integra-

tion point used in integrating Equation 4.20, and, if less

than zero, the reduced value of permeability tensor is used.

Also, a higher number of integration points are used since a
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discontinuity is involved. So the 3-D implementation has

the total head computed at each of 4 by 4 by 4 numerical

integration points as

h( 1 , ill, Ck) = {N( ,j , )}{h)e

where i, j, and k range from 1 to 4. The pressure head hP

for an arbitrarily specified datum h D is

hP = h + hD - z

Compute {AQ)ej and (AQ)Gj

For an internal node the flow should be zero. If it is

not, this indicates that flux is going across the boundary

at that node, and it is part of a moving free surface. The

technique used is to first compute element flows (AQ)ej by

{AO}e)j = (K] ajh}e,,j-1

and then assemble them into a change in flow for each node

designated by (AQ}Gj. For an external node where the flow QE

is specified, the change in flow AQ' becomes

AQ' = AQ - Q,

Here, AQ is the value from the array AQ)Gj for that node.

Compute Different Global Stiffness Matrix [K]Gj

The changes in head (Ah),I could be computed using the

equation

65



[KIGIIAh}GJ = -{AQ}Gj (4.26)

where [KiGj is the global stiffness matrix assembled from

the [K]ej. However, since a steady-state solution is

desired, it is expedient to employ the aerospace engineers'

strategy that states for a numerical expression solving for

Ah

(NUMERICS) (Ah) = PHYSICS

Now the physics require that the right-hand side of

Equation 4.26 go to zero. But the numerics of the left-hand

side can be simplified to achieve this goal by using the

unmodified stiffness matrix [K], (which has already been

computed) and applying the current boundary conditions to

obtain a different global stiffness matrix [K]Gj. As will

now be explained using Figure 32, the only place where

AB

Figure 32. Surface of Seepage
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boundary conditions change is on the surface of seepage.

Line segment AB is an exit line on an exit face, which is

shown only with the external sides of the brick elements at

the exit face. Each node below the line of seepage and

above or on the tailwater area will have a negative flow,

since flow is leaving the system at that point. So when

such a node is encountered, its pressure head is zero, and

its boundary condition for head is

h = z - hD

Now, if in the course of iteration the flow for this node

becomes positive, then the free surface has fallen below

this node, and its boundary condition must be changed. What

is done is illustrated in the 2-D sketch shown in Figure 33

where the region above the exit point is made impervious.

So the node with the status change will have its boundary

condition shifted from specified head to the no-flow bound-

ary condition.

Figure 33. 2-D Exit Point Analysis
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A node can also be in the no-flow, impervious condition

and need to change back to a node below the exit line. This

is, in fact, a case of a rising exit line. What is done is

to check the currently impervious node on the surface of

seepage for the condition

h ; z -

If this condition is passed, then the node is changed back

to a specified head node with the boundary condition

h = z - hD

again applied.

Compute (Ah Gj

Let the unmodified stiffness matrix {K]u which has now

been modified at iteration j by the current boundary condi-

tions be designated as LK]G'.j Then the actual system of

equations used to compute the change in head at iteration j

is

[K]G,j{Ah}G = - {AQ} G (4.27)

Equation 4.27 is a symmetric, positive definite, banded

system of simultaneous linear equations that can now be

solved for {Ah)Gj.

Update (h)Gj

The active nodes can now have their total heads updated

as follows:
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{hG = {h}G _j1  + {Ah}Gj (4.28)

One iteration is now complete, and the cycle is repeated.

The process is continued until convergence is achieved.

Determine Final Position of Free Surface

The determination of the final position of the free

surface for a structured grid algorithm is rather st'-aight-

forward. However, the thrust of this work is to do a free

surface problem without any required structure at all to the

grid. The determination of the free surface in this case is

significantly more difficult, especially at the exit line.

First, consult Figure 34 to understand the complexities away

from the exit line. Here two tetrahedral elements, ABEC and

ACED, of an unstructured 3-D grid are shown with the free

surface denoted by the cross-hatched plane crossing these

elements. First, the reason the free surface crosses thece

elements is that the pressure head at point A is less than

zero, and at points B, C, D, and E the pressure head is

greater than zero. Now it is best to keep the same data

structure (FEM mesh) for the purpose of computing discharge

velocities at the elements and providing output to post-

processor programs. So one strategy is to "clip" an

affected element by the free surface to create two elements.

Then one element would be completely above the free surface,

and one would be completely below the free surface. How-

ever, this leads to significant complications. Notice,
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A

E
Figure 34. Free Surface across Grid

first of all, that no problem exists in Figure 34 where each

four-sided piece is changed into a four-sided piece and a

five-sided piece. However, consider the effect of a six-

sided element being clipped by the free surface with the

piece left below the free surface shown in Figure 35. What

is left is a seven-sided piece, no longer conforming to the

allowable shapes of the eight-node brick element. This

problem could be alleviated by dividing the seven-sided

figure into acceptable pieces. However, the variety of
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Figure 35. Seven-Sided Piece

unacceptable shapes warranted the search for another solu-

tion. Point A in Figure 34 with a negative pressure head

was moved to a point on the free surface where the pressure

head is zero. This, however, creates a new dilemma. Any

point in the cross-hatched surface representing the free

surface has zero pressure head, so some criteria must be

devised to decide which point will be chosen.

After trying different algorithms, the one that works

well and was implemented will now be given:

I. Identify a node (such as point A in Figure 36) with
pressure head less then zero.

A. Find a line segment emanating from A so that the
second point of the line segment (such as point B
in Figure 36) has pressure head greater than zero.

1. Compute the value of the parameter s
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0 s S 1

with s = 0 at point A and s = 1 at point B
where the pressure head is zero (point 0 in
Figure 36). Linear interpolation gives

A
A

0'

B
Figure 36. Line Segment AB

h - hpA (4.28)SO hpA -h,,

where h is the pressure head at point A,
h is te pressure head at point B, and so
is the value of s at point 0.

2. Compute the new position of point A along AB so
it resides on the free surface by

{r' o = (1 - s0 ) {r}A + so{r}B

where (r)q is the new position of point A, {r}A
is the original position of point A, and (r)B
is the position of point B.

3. Compute the distance squared from point A to
point 0. Save that number with the current
position of the free surface.

B. Repeat step A for other line segments starting
with point A. Keep the one (r}0 with the smallest
distance squared value.
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II. Process all other node points just above the free
surface that need to be moved in the same way as in
step I.

A node point on the surface of seepage cannot be done

exactly this way. The reason is that the value of so can-

not be computed. To understand, first consider the 2-D case

illustrated in Figure 37. Line segment AB is a line on the

surface of seepage, and E is the exit point to be

computed. Now AB contains an exit point because (1) the

nodes have surface of seepage boundary conditions and

(2) node A was flagged as an impervious node and node B was

flagged as a specified head node at the last iteration cycle

before convergence. Points a, b, and c are the three most

adjacent free surface nodes that have been moved from their

original position to their new positions, respectively, to

be used for computing point E.

A

B
Figure 37. Exit Point Computation

Exit point E must be determined by extrapolation. What

is used is a difference formulation using points 1 through
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3. First, the slope at point a is computed by the backward

difference expression

ma = (Yb - Ya)
(xb - Xa)

In a similar manner the slope at point b is

S(YC - Yb)

(xC - xb)

From these results the change in slope cm can be computed by

C (mb - ma)
(X b - Xa)

We can now compute the slope at point c using

m, = Cm(Xc - Xb) + mb

With xc, y,, and mc all known this line can be intersected

with line segment AB to obtain the intersection point E.

This is accomplished by substituting into the equation

Y = Yc + mI(x - x')

the parametric equation

{r} = (1 - s) {r}A + S{r}B

and solving for s. If s does not lie between zero and one,

the intersection point occurs outside the range of line

segment AB, and point B is taken as the exit point.

The 3-D case is much more difficult. Figure 38 shows a

plan view of a portion of the free surface just computed
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G

F

Figure 38. 3-D Free Surface

with the exit line FG needing to be computed. What is sig-

nificantly more difficult is the need to extrapolate off an

unstructured surface to get the intersection of that surface

with the surface of seepage yielding the points on the exit

line FG. After some analysis of these difficulties, it was

decided to take another approach. Figure 39 shows an almost

vertical exit face where it has been determined that point A

must move down on this surface to become part of the exit

line. Now at the last iteration, point B has the surface of

seepage boundary condition

h = z - hD

and point A is denoted as impervious with a computed head

value

hA < z - hD

75



C:

B
Figure 39. Exit Face

The amount point A must move down line segment AB is deter-

mined by computing a value for the parameter s. First,

compute so by

s o = hA + hD - ZA (4.29)Z B - Z A

The final value of s is computed from

s = ( - y)Os + y (4.30)

with

0.5 y 1

From experience the value used in this work is 0.8. The new

position of point A on AB is computed as before

{r} = (1 - s,) {r}A + sl{r}B

As in the other free surface computations, point A can

move in more ways than along line segment AB. In Figure 39,
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for instance, line segments AC and AD must also be consid-

ered. As before, the line segment is kept with the smallest

distance of movement of point A from its original position.

Compute Final Element Discharge Velocities

Now that the nodes near the free surface have been

moved to be on the free surface, the element data must be

modified so that all elements are either completely above

the free surface or completely below it. Figure 40 shows an

originally square mesh with the new shapes of the elements

conforming to the free surface shown. Those elements above

the free surface will be given a value for discharge

velocity of zero, and those below the free surface will have

their discharge velocities computed using Equation 4.23.

Additional care must also be taken to ensure that the newly

formed elements that become skewed are handled properly.

They can be either removed from the grid or kept and given

zero discharge velocity. In this work they are kept and

given zero values of discharge velocity for compatibility

with postprocessing programs.

Achieving the newly formed grid as shown in Figure 40

is more difficult than it first appears. First, consider

the 2-D case where Figure 41 shows the three steps used in

the process. Step 1 consists of determining the position of

the free surface nodes on the proper line segments (the dots

in Figure 41). In step 2 the free surface nodes are moved
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Figure 40. New Element Shapes

(1)(2) (3)

Figure 41. Three-Step Process
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to their new positions. Step 3 is the most complicated in

that additional movement of nodes is required to get ele-

ments either completely below or completely above the free

surface.

The 3-D version of this problem is even more compli-

cated. This is because of the many different shapes the 3-D

brick element can take as shown in Figure 27. Also, because

of the general nature of the 3-D element, establishing what

is on top and what is on bottom becomes blurred. However,

as illustrated in Figure 42, a 3-D version of the algorithm

presented above was developed as part of this work. Fig-

ure 42 shows a brick element with free surface nodes

3 2 3 2

1 1 1

8 5 7,85

Before After

Figure 42. 3-D3 Version
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occuring exactly at nodes 3 and 8. The first plot shows the

element before any change, and the second plot shows the

element after it was modified to fit the free surface. Step

3 of the algorithm collapsed node 7 down to node 8. In

fact, the first step 3 algorithm considered checks each of

the six faces of an element to see if any two nodes on a

diagonal of a face are bath free surface nodes. If two

exist, then any other node on the face having a head value

h < z- hD

will be collapsed to one of the diagonal nodes.

This algorithm, however, does not always work. The 2-D

version of this algorithm, for instance, works on all verti-

cal columns of six elements each in Figure 40 except the

last one. The isolated part of the grid where the problem

exists is shown in Figure 43. Figure 44 shows the three

step sequence and how it breaks down. The middle element

marked by the X does not have two free surface nodes

on a diagonal, so the third step is not completed. There-

fore, a higher order iterative algorithm must be

implemented.

The following algorithm was developed as part of this

work:
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Figure 43. Isolated Piece

1
' -- J _ _ --

()(2) (3)

Figure 44. Three Steps for Isolated Piece
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Repeat until no change occurs

For n = 1 to the number of elements

If the free surface intersects the element, then

For i = 1 to 12 /* Test all line segments. */

If a free surface node is connected to a node
above the free surface, then

Change the coordinates and head of the
node above the free surface to that of the
free surface node.

Flag the moved node as a free surface
node, but as an artificially generated
one.

End If

End i

End If

End n

End Repeat

The algorithm can be utilized in two ways:

1. Adjust only those nodes immediately above the free
surface and leave the other nodes alone.

2. Adjust those nodes immediately above the free
surface and have the nodes farther above the free
surface to collapse to the free surface.

Appendix A contains a FORTRAN listing and description of the

free surface algorithms described in this chapter with

implementation of Option 2 for utilizing the algorithm.
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CHAPTER V

THREE-DIMENSIONAL SEEPAGE PACKAGE AND GROUNDWATER MODEL

Introduction

A three-dimensional seepage package and groundwater

model was developed that concentrated on three areas:

1. Sophisticated numerics to allow both structured and
unstructured grids with a minimum of input for free
surface problems.

2. Interface to state-of-the-art grid generation
technology.

3. Interface to state-of-the-art scientific
visualization technology.

The numerics were discussed in detail in Chapter IV. This

chapter describes the components of the 3-D model.

Grid Generation

EAGLE, written originally for aerospace engineering

applications (computational fluid dynamics (CFD)) to gener-

ate structured grids for finite volume solvers, was used as

the primary grid generation tool in this work. It has

extensive algebraic grid generation capabilities, as well as

state-of-the-art elliptic smoothing capabilities. However,

since the FEM was the computational tool used, partly

unstructured of totally unstructured grids may also be used

with the developed computer program.
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Conversion to FEM Format

The finite volume grid from EAGLE with potentially

several blocks must be converted to the final data needed by

the FE program. Five things are involved:

1. Getting title, datum, and material property
information.

2. Applying boundary conditions.

3. Combining the different blocks into one FEM grid.

4. Applying bandwidth minimization.

5. Writing an output file containing this information.

Appendix B contains a description of the program written to

accomplish these tasks.

Getting Data

Getting title, datum, and material property information

is a simple matter of prompting the user for this

information.

Applying Boundary Conditions

The EAGLE finite volume grid being structured makes

applying boundary conditions much easier than usual. What

is done is to ask for the following data:

IBLOCK, I, J1, Ki, 12, J2, K2, IBC, BV

where the meanings of the variables are as follows:
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IBLOCK - Block number.

Ii - First i value.

J1 - First j value.

K1 - First k value.

12 - Second i value.

J2 - Second j value.

K2 - Second k value.

IBC - Boundary value code.

BV - Boundary value.

The possible values of IBC and BV are given:

IBC Value Boundary Value

1 Specified head.

2 Exit face. Head is computed
by h = z - hd.

12 Border of exit face and tail-
water level. Head is
computed the same as IBC = 2.

-1 Specified flow.

-2 Specified discharge velocity.

What this allows the user to do is to apply a boundary

condition on an entire face. For example, consider the

quadrilateral earth dam represented by one block shown in

Figure 45. The i index of the block varies in the horizon-

tal direction, the j index varies into the paper, and the k

index varies along lines such as ABE and IG. Suppose
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E J

A I
Figure 45. Quadrilateral Earth Dam

this is a 101 by 101 by 101 points block. Also, let the (x,

y, z) coordinates and (i, j, k) values be as follows:

Letter x Y z i i k

A 0 0 0 1 1 1
B 80 0 12 1 1 81
C 0 200 0 1 101 1
D 80 200 12 1 101 81
E 100 0 15 1 1 101
F 100 200 15 1 101 101
G 110 0 15 101 1 101
H 110 200 15 101 101 101
1 210 0 0 101 1 1
J 210 200 0 101 101 1

A headwater value of 12 ft can now be specified by the

data:
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IBLOCK Ii Ji KI 12 J2 K2 IBC BV

1 1 1 1 1 101 81 1 12

In a similar manner, the boundary conditions of the exit

face are defined by the two lines of data:

IBLOCK Ii Jl Kl 12 J2 K2 IBC BV

1 101 1 2 101 101 101 2 -

1 101 1 1 101 101 1 12 -

The - for Bv indicates that no data is needed, but a zero

(0) must be supplied for the sake of completeness of data.

Combining Different Blocks

The process of combining different blocks into a single

finite element mesh consists of the following:

1. Obtaining a single set of consecutively numbered
nodes and elements.

2. Removing duplicate nodes and modifying the node
numbering and element connectivity matrix to
reflect the changes.

Note that duplicate nodes can occur in an 0 type grid along

the cut as well.

Applying Bandwidth Minimization

There are different optimization schemes with varying

degrees of sophistication. Some rearrange the node numbers

while others modify the element numbering. It was decided

to keep the element numbers the same in this program to

allow the ability to output data to plotting programs like

FAST. Therefore, a bandwidth niniirization algorithm was
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implemented to modify the node numbers. Because memory is

plentiful on the Cray, a straightforward algorithm was used

as follows:

1. Create an adjacency table stating what other nodes
are connected to a given node and how many.

2. Place the new node 1 at various places on the grid.
Then number the adjacent nodes to the new node 1 as
2, 3, 4, etc.

3. Go to the new node 2 and number the adjacent nodes
to that node which have not been numbered as 5, 6,
7, etc. Continue this process until all the nodes
have been numbered.

4. After trying as many of the possible positions for
the new node 1 as desired, keep the one with the
smallest bandwidth.

Writing an Output File

The last thing to be done is to write an output file

containing the FEM grid. This includes all the preliminary

data, boundary condition information, and discharge velocity

data.

Cray Version of FEM Program

The finite element program was converted to the Cray

YMP with as much voctorization as possible being accom-

plished. The solution of the banded system of equations was

solved by using an out-of-core solver with blocks of size

1250. The forward loop of the Gauss Elimination algorithm

was vectorized, but the back substitution loop was not.

Nevertheless, a problem having 10,644 nodes that took

approximately 12 hr on the Silicon Graphics Power Series
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4D/220 GT took 3 min, 20 sec on the Cray YMP 6/128. Even

more savings can be attained by using an in-core solver and

further vectorization. The initial savings were so dramatic

that this enhancement will be done at a future date.

Scientific Visualization

An output file containing the results was written to

link with various scientific visualization tools. Of

course, this file differs depending on which tool is used.

Appendix C contains a subroutine that writes a file for Flow

Analysis Solver Toolkit (FAST) (Bancroft, Kelaita, McCabe,

Merritt, Plessel, Globus, and Semans 1991). The output is

similar to that required by PLOT3D or Scientific Visualiza-

tion Systems (program SSV) sold by Sterling Software. How-

ever, the data must be converted to a binary file written in

C to be input to SSV or the beta version of FAST.

Conversion from Element Data to Node Data

The discharge velocities are computed for a given ele-

ment at the average value of the (x, y, z) coordinates of

the nodes of that element. However, to link with finite

volume scientific visualization tools, values are needed at

each node. Consider Figure 46 to visualize the process used

to get node values. Discharge velocity at node n is com-

puted by some type of average of the discharge velocities
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from points A, B, and C. The program in Appendix B uses a

straight average. However, another popular choice is a

weighted "one over distance squared" average given by

_ ( {V}A . V}B+ VIC)
D-o D dd

where dAn is the distance between point A and node n, d8n is

the distance between point B and node n, and den is the

distance between point C and node n. D is given by

D =-+-+ 1

dA' d, 2,- dc

A- 1Ci

Figure 46. Element to Node Conversion
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Conversion from Finite Element to Finite Volume Format

Now that values of head and velocity exist at each

node, the block data structure must be reproduced to output

a results file for FAST. The complication is that node num-

bers are scrambled from bandwidth minimization, nodes are

eliminated when the blocks are combined, and the block sizes

are discarded when creating the FEM grid. The last dilemma

is solved by writing an output containing the block sizes.

Further, since the element numbers have been preserved in

the bandwidth minimization process and the elements were

created in order of input, the element connectivity matrix

can be used to write the output file. To understand, con-

sider Figure 47 showing a 3- by 3- by 3-point block. First,

5 6

1 2 8

Figure 47. Block
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there are 2 x 2 x 2 elements. So a triple loop with i2 = j2

= k2 = 3 and mstart = the element number just before the

block begins can be set up as follows:

mm = mstart
For k = 1 to k2-1

For j = 1 to j2-1
For i = 1 to i2-1

mm = mm + 1
Output results for the 1st node of element m.

End i

/* Do last one on i row. */

Output results for the 2nd node of element m.
End j

/* Do last row in i, j plane. */

mm = mm - i2 + 1
For i = 1 to i2-1

mm = mm + 1
Output results for the 4th node of element m.

End i
Output results for the 3rd node of element m.

End k

/* Do last i, j plane. */

mm = mm - (i2-1) * (j2-1)
For j = 1 to j2-1

For i = 1 to i2-1
mm = mm + 1
Output results for the 5th node of element m.

End i
Output results for the 6th node of element m.

Erd j

/* Do last row of last i, j plane. */

mm = mm - i2 + 1
For i = 1 to i2-1

mm = mm + 1
Output results for the 8th node of element m.

End i
Output results for the 7th node of element m.
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This process can be combined into a single set of loops

by use of a variable (IPICK in the listing below) that

selects which node of the given element should be processed.

A FORTRAN implementation of the procedure follows:

DIMENSION IPICK(2, 2, 2)
DATA IPICK /1, 2, 4, 3, 5, 6, 8, 7/

C
IROW = 12 - 1

IPLANE = (J2 - 1) * IROW
C

DO K = 1, K2
KK = 1
IF (K.EQ.K2) KK = 2

C
DO J = 1, J2

JJ = 1

IF (J.EQ.J2) JJ = 2
C

DO I = 1, 12
II = 1
IF (I.EQ.I2) II = 2

C
MM = (K - KK) * IPLANE + (J - JJ) * IROW + I

& - II + 1 + NSTART
IPOS = IPICK(II, JJ, KK)

C
Output results for the IPOS'th node of

element MM.
C

END DO
END DO

END DO

The subroutine given in Appendix C uses this streamlined

procedure.

Visualization Techniques

It turns out that programs such as FAST written for

displaying results of CFD computations using structured

grids have capabilities very useful in displaying

seepage/groundwater results. One of the goals of this work
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is to apply aerospace engineering technology to the flow of

groundwater and seepage under dams. This has proven to be a

very successful endeavor. Specific tools and their use will

now be described with actual examples given in Chapter VI.

Initial and Final Grid

Of course, the first thing that is needed is the dis-

play of the generated grid. Different surfaces of the grid

are selected for viewing with various options available,

including grid lines, continuous tone shading, and translu-

cent shading. For unconfined flow problems the grid is

modified to the shape of the free surface, and the part of

the grid where there is no longer any water is collapsed to

the free surface. Thus, it is extremely helpful to view the

final shape of the grid, as well as the original grid, to

visualize the quality of the solution.

Isolevels

One important aspect of the flow net for 2-D applica-

tions, such as the one given in Figure 12, is equipotential

lines. The 3-D version of an equipotential line is a sur-

face in 3-D space where the potential is a constant value.

An isolevel, typically used to look at where a particular

value of pressure exists around a structure such as an air-

foil, is simply ideal for this alternate use. Different

isolevels in a seepage or groundwater problem can be readily

analyzed by the practicing engineer to check the
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reasonableness of the solution. Incorrect boundary condi-

tions, for instance, will become very apparent.

Color Contours on a Surface

An alternative to the isolevels is color contours on a

given surface. The surface can be either one of the i-j,

j-k, or k-i planes of the structured grid or n arbitrary

cut through the grid. Successive planes can also be viewed

to see the progression of results as well.

Particle Traces

The other aspect of the flow net given in Figure 13 is

the flow lines. While it is not possible in a general 3-D

problem to draw a flow net, the particle traces typically

used by the aerospace engineer to trace air flow to find,

for instance, vortices are ideal to show the flow of water

through the soil. The current version of FAST does a

steady-state computation of a particle trace which works

very well in this application.
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CHAPTER VI

3-D GROUNDWATER FLOW IN AN AQUIFER

Introduction

This chapter contains a three-dimensional problem

demonstrating the application of the seepage/groundwater

model described in Chapter V. The problem that is given is

3-D groundwater flow in an aquifer. EAGLE is used to gener-

ate the grids, the new 3-D sc-page'groundwater model is used

to do the computations, and FAST is used to display the

results. Simpler verslo.>:7 of t!'e problem are first done to

accomplish the following:

1. Compare with known results.

2. Investigate the quality of the selected grid.

3. Illustrate the scientific visualization
capabilities of FAST.

Of specific importance, also, is whether the numerics of the

unconfined portion of the implemented algorithms work

properly.

Groundwater Flow in an Aquifer

The problem of groundwater flow in an aquifer will now

be presented.
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General Description of Problem

The problem of groundwater flow in an aquifer involves

flow of water subject to pumping and recharge. Pumping

occurs through wells with varyin- yields. Natural recharge

occurs by filtration through the bed of rivers crossing the

aquifer area and by seepage through zones of limited extent

located at the boundary of the aquifer. Artificial recharge

occurs by filtration from the ground surface. Finally, the

aquifer is characterized by zones with significantly differ-

ent material types with some having, for instance, a strong

anisotrophy of

kH1
kv

Simplified Problem

The simplified problem will now be discussed and

illustrated.

Description of Simplified Problem

The simplified problem is shown in Figure 48 and con-

sists of a very small homogeneous aquifer 1,000 ft long,

500 ft wide, and 120 ft deep. Two partially penetrating

wells with the following characteristics have been placed in

the aquifer:

Well X Y Radius Penetration Q

1 250' 200' 1' 40' 100 cfm

2 600' 250' 2' 80' 200 cfm
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RIVER

a. Plan View

b. Front View

Figure 48. Aquifer with Two Wells
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Only confined flow exists in the aquifer, and it is

impervious on three sides, as well as the top and bottom.

The remaining side, however, is recharged by a river modeled

by a constant head of 50 ft above the top of the aquifer.

The wells are modeled by the flows, Q, and Q2, being

distributed uniformly on the sides of the respective wells.

The permeability of the soil is 0.1 ft/min.

Analytic Solution for a Partially Penetrating Well

An analytic solution to a partially penetrating well

(Figure 49) of thickness t, penetration b, well radius r,

permeability k, and flow Q has been developed (Muskat 1946),

and it will now be given. First, define the variables

a -

2 t,,z
2t w

(6.1)

-b

2 t,

r w
aw - rw

S2t,

where (r, z) = (0, 0) is located at the top of the aquifer

and at the center of the well. Next, define the function

Z(S, y) : Z 1 (6.2)
n0 (n + y)s

For small values of a,
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Figure 49. Partially Penetrating Well

0 a :c , 0.5

the total head, p, becomes

100
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F(i + C + I6)£(' - C 3
qr : {- log (1+ + r(+

r(1 - C - ) (I + C -

log + P + a (C + )2

C - + + v/ 2  + (C _ 6)2
(6.3)

[z(2, 1 - C - 3) - Z(2, 1 - C +
4

+ Z(2, 1 + Z - ) - z(2, 1 + + + P)]

+ O(cz 4) }

where the Gamma Function, F(x), is defined by

I(x) = f t x - 1 e ' dt

q is a flux density given by

Q
4nkb

For the remaining larger values of p

-4 [qn Ko(2nira) cos(2ntC) sin(2nnt)

(6.4)

+ Plog-]

where K0 (x) is the modified Bessel Function of the second

kind. For relatively large values of x (Press, Flannery,

Teukolsky, and Vetterling 1989),

K0 (x) z eV2nx

Thus, an implementation of Equation 6.4 requires relatively

few terms.
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Well in an Aquifer

The equation for the potential of a well in the simpli-

fied aquifer shown in Figure 48 can be determined from the

solution of a single well by the method of images (Told

1959). Figure 50 illustrates how it works. The original +Q

+Q +Q +0

N / \ / \

+Q +Q - +Q
//

-Q .Q -Q
0 0 0

Figure 50. Method of Images
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well can have zero potential along the river boundary by

adding a -Q image well reflected across the boundary. In

like manner, a +Q well can have the impervious boundary

condition preserved by adding a +Q image well across the

boundary. After the original four image wells have been

added, however, additional ones must be added to balance the

image wells. In fact, the exact solution is an infinite

number of image wells. However, because the radius of

influence of a well is from 500 to 1,000 ft, a first or

second order approximation is typically all that is

required. However, the small problem currently being

addressed requires 29 image wells for each original well.

This gives 15 wells on either side of the river boundary to

provide zero potential at the river.

Equations 6.3 and 6.4 can now be appropriately applied

to the original well and the 29 image wells if additional

care is taken in defining variables in Equation 6.1. If a

well is located at (x0 , y0 ) and the top of the aquifer is at

zt, then use

-- X0) + (y - yod

I (z - z)
2h

The positions and signs of their respective Q's for the

29 image wells are now given. Here, the length of the aqui-

fer is desicinated by 1, and the origin of the coordinate
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system as seen in the plan view is the lower, left-hand

corner at the bottom of the aquifer.

Image X Y Sign

1 - 21 + x. - 2t. - YO +

2 - Xo - 2t. - YO +

3 x0  - 2t. - YO +

4 21 - x o  - 2t. - YO +

5 21 + x o  - 2t. - YO +

6 - 21 + x. - 2tW + YO -

7 - x0  - 2tW + YO -

8 xo - 2tW + YO -

9 21 - xO - 2tW + YO -

10 21 + x. - 2t + YO -

11 - 21 + x. - YO -

12 - X0  - YO -

13 Xo - YO -

14 21 - x O  - YO -

15 21 + x o  - YO -

16 - 21 + x. YO +

17 - Xo YO +

i8 21 - x. Yo +

19 21 + x O  YO +

20 - 21 + x 0  2tW - YO +

21 -X 0  2tW - YO +

(Continued)
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(Concluded)

Image X Y Sign

22 x 0  2t w - yo +

23 21 - x0  2tw - YO +

24 21 + xO 2tw - YO +

25 - 21 + xO 2tw + YO

26 - x 0  2tw + YO

27 x 0  2t w + Y0

28 21 - xO 2t w + YO

29 21 + x0  2tw + Yo

Multiple Wells in an Aquifer

Multiple wells in an aquifer are simply handled by

summing the results of the individual wells. Computation-

ally, it is easy to specify a zero potential on the part of

the grid modeling the river by selecting a suitable value

for the datum. In our simplified problem, for instance, hD

= 120 ft. The heads will all be zeru or negative and repre-

sent the drawdown as a result of the pumping of the wells.

Quality of Grids Used

Usually, one can only qualitatively analyze the grids

that are used by examining such things as orthogonality,

aspect ratio, smoothness, etc., but, in this case, since the

exact solution is known, a quantitalive comparison can also

be made. This offers an excellent opportunity to test some

of the different options in EAGLE and different mappings to
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see what works best for this problem. One simply computes

the percentage error for each grid point for each grid stud-

ied. This gives an excellent way of improving the grids

used in modeling wells in real-world problems rather than

simply using what "looks good."

Solution for a Partially Penetrating Well

First, consider the solution for a partially penetrat-

ing well in an infinite aquifer (beyond the well's radius of

influence). This will give an indication as to how to do

more comple" oblems using wells as well as show the scien-

tific vi ,,.jization capabilities of FAST for this applica-

tion. The problem solved is the second well of the simpli-

fied problem. The pertinent data are

Q = 200 cfm
k = 0.1 ft/min
b = 80 ft

= 120 ft
Well Radius = 2 ft

Radius of influence = 480 ft

Grid technique

0 grid with plug. A grid is constructed first by con-

structing an 0 type grid (21 by 21 by 25) as if doing a

fully penetrating well (the entire 120 ft) for one block and

then for a second block that constitutes a plug (40 ft here

with a 6 by 6 by 9 grid) to account for the well being only

partially penetrating. Figure 51 shows the 0 grid repre-

senting the soil, and Figure 52 shows the grid for the plug.
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Figure 51. 0 Type Grid

Note that an 0 type grid could have been used for the plug,

but a different type was chosen.

Spacing. The grids in Figures 51 and 52 use equal

spacing. However, it is important to use concentrated

spacing tc,4ard the well and where the well bottom touches

the soil. Tnerefore, a second grid and solution was

obtained using concentrated spacing. Figure 53 shows the

radial distribution of nodes, and Figure 54 shows the

distribution with depth of this grid.
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Figure 52. Plug

Analysis of results

Visualization. First, the results were viewed using

FAST to consider the quality of the solution. It turns out

that FAST works very well for this purpose. Figure 55 shows

a color contour plot of total head for a vertical section

(constant I) using the module Surfer. This plot is very

similar to plotting equipotentials as half of a flow net in

108



Figure 53. Radial Spacing

2-D applications. The results show very clearly horizontal

flow until the water approaches the well. Figure 56 shows

some constant J color contour plots. The constant color

bands indicate horizontal flow as well. As one approaches

the well, the constant J surfaces have different colors

showing other than horizontal flow. Figure 57 shows a constant
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K color contour plot. First, the problem is axisymmetric,

so the solution must be as well, which is the case. Also,

the variation is approximately logarithmic as should be.

Another type of visualization technique using module

Isolevel is shown in Figure 58. The 2-D problem has equipo-

tential lines, but the 3-D problem has isolevel surfaces.

Again, since flow occurs perpendicular to these surfaces,

they will be vertical rings until the well is approached.

Figure 59 shows the final type of visualization used

(generated from module Tracer). It is a particle trace for

a vertical section of the soil near the well. What the

aerospace engineers use for showing the flow of air around

an aircraft is also an excellent tool for showing flow in

porous media. The part of the grid that represents the well

is shown in red, and the flow lines are shown in black.

Again horizonal flow exists except near the well.

The first value of these visualization tools is to aid

in deciding whether the solution appears reasonable. If

incorrect boundary conditions or poor answers result, this

becomes readily apparent. A second value is once confidence

has been obtained in the model, specific details as to what

is happening can then be analyzed.

Error analysis. Equations 6.3 and 6.4 were used to

compute head or potential for each of the 10,644 nodes, and

the results were compared with the computed results. The

break point for a between using Equation 6.3 or 6.4 is
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a 0.2

The grid with equal spacing had a maximum percentage error

of 24.1 percent. Since the heads near r = 480 ft approach

zero, the percent error was computed by

% hC = h:X 100%
hw

where

hC = computed head

ht = theoretical head

h = maximum head at the wellw

Figure 60 shows a color contour plot of percent error for

this grid with white being the worst case. It is remarkable

that with even spacing the error is very small until you are

very near the well. The default spacing in EAGLE was used,

and the maximum percent error for this grid was 4.6 percent.

Solution of Simplified Problem

Now the solution for the problem given in Figure 48

will be given. Because quality of grids is an important

issue, different single and multiple block configurations

were considered. Because of its potential to real-world

problems and the developed capability to merge separate

blocks, the selected solution is to enclose each well in an

O type box grid (Figure 61) and merge them with their
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Figure 61. Two-Well Problem

respective plugs and each other. Two versions will be pre-

sented here. A large algebraic grid of 21,266 nodes will be

first considered and then compared with a much smaller

elliptic grid of 13,266 nodes using the contyp='initial'

option in EAGLE. Appendix D contains a description of the

data required to generate the elliptic FEM grid.

Analysis of results

Visualization. First, the large algebraic grid at the

well is shown in Figure 62. The distribution of nodes from

the circular well to the rectangular boundary is quite good

before smoothing is done. Figures 63 through 65 show color

contours of total head for J, I, and K levels, respectively.

Here, the highest value (white) is at the river, and the
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Figure 62. Large Algebraic Grid at Well
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lowest value of head (black) is at the wells. Figure 66

shows the isolevel plot for the two well system. Figure 67

shows flow lines (particle traces) going into the first

well. All flow starts at the river and ends at one of the

two wells. One surprising result is that the left most flow

line skips the smaller well and goes for the bigger one.

Error analysis. The large algebraic grid of 21,266

nodes created from essentially putting together two single

well grids had a maximum percentage error of 5.3 percent.

Actually, some of this error is attributed to the truncation

in the number of image wells and some is due to numerical

imperfections. It seemed plausible that this grid could be

significantly reduced in size by applying the elliptic grid

generation techniques of EAGLE to get close to the same

result. Figure 68 shows a K surface for the first well for

the smaller elliptic grid of 13,266 nodes. This grid

yielded a maximum percentage error of 5.7 percent which

substantiates the hypothesis.

Real-World Example

A real-world example showing the solution process will

now be presented.

Description of Problem

The problem shown in plan view in Figure 69 consists of

a part of an aquifer containing a river crossing through the

region with partially penetrating wells pumping water out of
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Figure 68. Elliptic Grid

the system. Line segment EF is an impervious wall such as a

slurry trench found at certain sensitive military arsenals

and construction sites. The region with the two wells is
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E

Figure 69. Plan View of Aquifer

highly anisotropic and has the following permeability data

(see Figure 70):

IVI
0e = 21 °0

e= i0°

kp, = 0.01 ft/min

kP2 = 0.015 ft/min

kP3 = 0.001 ft/min
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Figure 70. Permeability Orientation

The region under the river is a rather impervious clay hav-

ing the soil properties:

0e = 0 °

I e = 00

*e = 00

kpi = 0.00001 ft/min

kp 2 = 0.00001 ft/min

kP 3 = 0.00001 ft/min

Finally, the region with the slurry trench has soil proper-

ties of a pervious sand:
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0e =0
°

4 = 00

V = 00

kP1 = 0.1 ft/min

kP2 = 0. 1 ft/min

kP3 = 0.1 ft/min

The thickness of the aquifer varies between approximately

200 to 350 ft.

FEM Grid

This problem provides an excellent opportunity to test

the techniques and concepts developed thus far. The region

was divided into 16 blocks or subregions as shown in

Figure 71. Thirteen subregions are visible with three plugs

making partially penetrating wells not shown. Decoupling

the geometry makes it much easier to generate the grid at

times. It is certainly not necessary to have so many blocks

as the mapping capability of EAGLE is extensive. However,

it was done this way to give the approach a thorough test.

Once the data files for the surf and grid modules of EAGLE

were developed for a particular type of region, it was very

easy to modify these files for the next similar type region.

After all the pieces were generated, it was a simple matter

to combine the pieces into a single, complete FEM grid using
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Figure 71. subregions

the program developed as part of this work. Figure 72 shows

a plan view of the grid, and Figure 73 shows a perspective

view of the grid and aquifer system. Eleven layers (K

levels) were used with the resulting FE grid having

11,578 nodes and 9,855 elements.

With the head at the river being 300 ft, the wells each

having a penetration of 100 ft, and a head of 260 ft at the

well, the following data was used to generate the FE grid

for the problem assuming the 16 pieces have already been

generated:
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com
16
aquif 1. egl
1 21. -53. 10.
aquif2. egl
1 21. -53. 10.
aquif3. egl
1 21. -53. 10.
aquif4. egl
1 21. -53. 10.
aquif5. egi
1 21. -53. 10.
aquif 6. egi
2000

aquif7. egi
3000

aquif8. egi3000

aquif9. egi
3000
aquiflO .egl
3000

aquif l. egl
3000

aquifl2 egl
3000
aquif 13. egl
3000
aquifl4. egl
1 21. -53. 10.
aquifl5 .egl
1 21. -53. 10.
aquifl6. egl
3000
ban
bc
2 1 1 6 23 1 8 1 260.
bc
2 1 1 9 23 1 9 12 260.
bc
2 1 1 10 23 1 11 2 0.
bc
5 1 1 6 23 1 8 1 260.
bc
5 1 1 9 23 1 9 12 260.
bc
5 1 1 10 23 1 11 2 0.
bc
8 1 1 6 21 1 8 1 260.
bc
8 1 1 9 21 1 9 12 260.
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bc
8 1 1 10 21 1 11 2 0.
bc
6 1 1 11 23 5 11 1 300
out
aquifer
Aquifer with Unconfined Flow
0.
.01 .015 .001
.0001 .0001 .0001
.1 .1 .1
end

The grid around each well was generated by going

directly from a circle to a rectangular type region with

care to use gradually increasing spacing (Figure 74). For

some applications there may be too much skewness, and an

alternate plan such as a five-region system must be imple-

mented. However, as will be shown later, good results were

achieved in this application using the original approach.

The impervious wall can be easily handled as shown in

Figure 75. All that must be done is to have nodes at dif-

ferent positions on the sides of the wall.

Presentation of Results

The problem was first run as having confined flow and a

homogeneous, isotropic medium. Figure 76 shows a color

contour plot of potential for the top value of k = 11 with

white being full potential and black representing the lowest

value of potential. An exception is the river which is at

full potential but is painted blue for visualization effec-

tiveness. Radial flow at the well is seen which is to be
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Figure 74. Grid at Well
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Figure 75. Grid at Impervious Wall

expected. It is also interesting to see the effect of the

impervious wall on the head distribution.

The unconfined flow problem was then run for the real

soil conditions, requiring a running time of 3763.2 sec on

the Cray YMP and five iterations for convergence.
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An important aspect of groundwater flow is the amount of

flow from the wells. The three wells pump a total of

512.7 cfm, which is within their range of capacity.

Figure 77 shows the color contour plot for unconfined flow.

Now, the less pervious region with the two wells has more

head loss which is correct. The free surface algorithms can

be tested by viewing the free surface at a well. Figure 78

shows a portion of the grid near one of the wells. The

results, including the exit line, look as they should. Many

other plots can be obtained, but these are left to the

interested user of the program to generate.

155



V

4-,
U

N

'I-



r4
::I

-- - - 159



CHAPTER VII

SUMMARY AND CONCLUSION

The techniques and tools ordinarily used by aerospace

engineers were successfully applied to 2-D and 3-D seepage

and groundwater modeling.

2-D Flow Nets

First, the techniques used to generate an orthogonal

grid were broadened in an innovative way to produce computer

generated flow nets of superior quality to those from other

techniques. When compared with less theoretically based

algorithms, the results using the author's work proved to be

significantly more accurate.

3-D Modeling

Next, computational techniques using the FEM were

developed for 3-D flow applications to apply correct bound-

ary conditions for unconfined flow and dodge the problems

that occur at exit lines. The avoidance of a complicated

2-D surface extrapolation for the exit line proved

especially helpful. This allowed the successful completion

of a 3-D seepage and groundwater model based on the interna-

tionally known 2-D seepage package developed by this author.
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A very innovative technique and program were next

developed to allow the user to first generate pieces of

structured grid using EAGLE and then combine the pieces in

an efficient manner to produce the unstructured FEM grid.

This has several advantages:

1. It makes it easy to apply boundary conditions.

2. Decoupling the geometry makes it easier and faster
to generate the resulting FEM grid.

3. Boundaries between blocks only have to match. Cuts
and differences in computational coordinates are
automatically fixed.

4. The grids are very aesthetic, which is important
when showing work to upper management.

Finally, the structure of the original pieces is pre-

served and output is placed in FAST format for later visual-

ization. The innovative aspect of this work is that for

unconfined flow problems the grid collapses in an arbitrary

manner to the free surface, and the structure is difficult

to maintain. In fact, the only thing that is used is the

number of blocks and the dimensions of each block to recon-

struct both the collapsed grid and results files.

All the above tools were then applied to the 16-block

problem of groundwater flow in an aquifer. It was gratify-

ing to see that the entire process really works!
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APPENDIX A

FREE SURFACE SUBROUTINES
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This appendix contains the listing and description of

three subroutines which are a FORTRAN implementation of the

free surface algorithms developed as part of this work.

Subroutine FREES

Subroutine FREES determines the final position of the

free surface, and its FORTRAN listing follows.

SUBROUTINE FREES
C
C
C THIS SUBROUTINE COMPUTES THE POSITION OF THE FREE
C SURFACE.
C
C
C DESCRIPTION OF NBC VALUES OF 100 OR GREATER.
C
C 100 - ABOVE THE FS WITH FLOW NOT GIVEN
C 200 - ABOVE THE FS WITH FLOW GIVEN
C 300 - ON FS WITH FLOW NOT GIVEN
C 400 - ON FS WITH FLOW GIVEN
C 500 - BELOW FS WITH FLOW NOT GIVEN
C 600 - BELOW FS WITH FLOW GIVEN
C
C

COMMON / GRID1 / NUMNP, NUMEL, NUMMAT, X(1000),
& Y(1000), Z(1000), FX(1000), NBC(1000), FLOW(1000),
& HLAST(1000)
COMMON / GRID2 / XKI(12), XK2(12), XK3(12),

& NP(9, 900), THETA(900), PHI(900), PSI(900)
COMMON / FREE / FRX(1000), FRY(1000), FRZ(1000),

& COUNT(1000)
COMMON / BANARG / MBAND, NUMBLK, R(1000), C(120,60),

& ND, ND2
DIMENSION IADJ(8, 3)
DATA IADJ /2, 3, 4, 1, 6, 7, 8, 5, 4, 1, 2, 3, 8, 5,

& 6, 7, 5, 6, 7, 8, 1, 2, 3, 4/
C
C INITIALIZE DATA.
C

DO 100 I = 1, NUMNP
COUNT(I) = 1.E30
FRX(I) = 0.
FRY(I) = 0.
FRZ(I) = 0.

100 CONTINUE
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C
C DETERMINE THE FREE SURFACE NODES.
C

DO 190 N = 1, NUMEL
C

DO 180 I = 1, 8
C

Ni = NP(I, N)
II = IADJ(I, 1)
N2 =NP(II, N)
II = IADJ(I, 2)
N3 = NP(II, N)
II = IADJ(I, 3)
N4 = NP(II, N)
PHi = R(N1) - Z(N1)

C
IF (PHi) 120, 110, 180

C
C FIX ALL BUT NBC = 2 NODE.
C

110 IF (NBC(Nl).EQ.2) GO TO 180
FRX(Nl) = X(N1)
FRY(N1) = Y(Nl)
FRZ(Nl) = Z(Nl)
COUNT(Ni) = 0.
GO TO 180

C
C CONSIDER LINE SEGMENT N1-N2.
C

120 CALL FSPT(N1, N2)
C
C CONSIDER LINE SEGMENT Ni-NJ.
C

CALL FSPT(N1, N3)
C
C CONSIDER LINE SEGMENT N1-N4.
C

CALL FSPT(N1, N4)
C

180 CONTINUE
C

190 CONTINUE
C
C SET FLAGS AND MOVE FR~EE SlIPFACE NODES.
C

DO 300 I = 1, NUMNP
C

NBI = NBC(I)
IF (COUNT(I).LT.1.E29) THEN

NBI = 300
IF (NBC(I).NE.O) NBI = 400
COUNT(I) = 1.
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X(I) = FRX(I)
Y(I) = FRY(I)
Z(I) = FRZ(I)
R(I) = Z (I)

C
C FIX FLOW FOR NBC = -1.
C

IF (NBC(I).EQ.-l) FLOW(I) = FX(I)
ELSE

COUNT(I) = 0.
IF (R(I).LT.Z(I)) THEN

NBI = 100
IF (NBC(I).NE.0) NBI = 200

ELSE
NBI = 500
IF (NBC(I).NE.0) NBI = 600

ENDIF
ENDIF

C
NBC(I) = NBI

C
300 CONTINUE

C
C FIX ELEMENTS CLOSE TO THE FREE SURFACE.
C

CALL FIXEL
C

RETURN
END

The codes 100-600 in the comments are flags used to

determine how the node is to be considered upon print-out of

results. A node is below, on, or above the free surface

with flow given or not given. Variables FRX, FRY, and FRZ

contain the coordinates of the new position of a free sur-

face node, and the value of COUNT determines if the node is

a free surface node. COUNT is initialized to 1030, and if

it is set to a smaller value, the node is a free surface

node. Do loops 180 and 190 check each line segment of each

element to find a line segment where the pressure head is

less than zero on the first node and greater than zero on
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the second node. When such a line segment is found, subrou-

tine FSPT is called to compute the new position of the free

surface node.

The next section (do loop 300) does three things:

1. Changes the value of COUNT to be 1 for a free
surface node and 0 otherwise.

2. Puts in the array NBC the print codes (100-600)
describing the status of each node.

3. Changes the (x, y, z) coordinates of the free
surface nodes to their respective new free surface
values.

Finally, subroutine FIXEL is called to fix the elements

to be either all below or all above the free surface.

Subroutine FSPT

Subroutine FSPT looks for a free surface point between

nodes N1 and N2. Its listing is now given.

SUBROUTINE FSPT(N1, N2)
C
C
C THIS SUBROUTINE CHECKS LINE SEGMENT M1-N2 FOR A
C POTENTIAL FREE SURFACE NODE. IF SO, THE NEW
C POSITION OF NODE NI IS COMPUTED.
C
C

COMMON / GRIDI / NUMNP, NUMEL, NUMMAT, X(1000),
& Y(1000), Z(1000), FX(1000), NBC(1000), FLOW(1000),
& HLAST(1000)
COMMON / GRID2 / XKI(12), XK2(12), XK3(12),

& NP(9, 900), THETA(900), PHI(900), PSI(900)
COMMON / FREE / FRX(1000), FRY(1000), FRZ(1000),

& COUNT(1000)
COMMON / BANARG / MBAND, NUMBLK, R(1000), C(120,60),

& ND, ND2
C
C SET EXIT POINT PARAMETER.
C

BETA = .8
C
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PHI = R(N1) - Z(Nl)
PH2 = R(N2) - Z(N2)

C
IF (PH2) 140, 100, 110

C
C COMPUTE S USING THE SPECIAL EXIT LINE COMPUTATION.
C

100 IF ((NBC(NI).NE.2).OR.(NBC(N2).NE.2)) GO TO 140
DZZ = Z(N2) - Z(NI)

IF (DZZ.EQ.0.) THEN
S = 1.

ELSE
SO = PHI / DZZ
S = (1 - BETA) * SO + BETA

ENDIF
GO TO 120

C
C DON'T LET A SURFACE OF SEEPAGE NODE BE MOVED OFF
C THE SURFACE OF SEEPAGE.
C

110 IF (NBC(N1).EQ.2) GO TO 140
C
C COMPUTE S USING THE FREE SURFACE NODE COMPUTATION.
C

S = PHI / (PHI - PH2)

C
120 IF ((S.LT.0.).OR.(S.GT.1.)) S = 1.

DX = (X(N2) - X(N1)) * S
DY = (Y(N2) - Y(N1)) * S
DZ = (Z(N2) - Z(NI)) * S
RR = DX * DX + DY * DY + DZ * DZ

C
C KEEP THE ONE WITH THE SMALLEST MOVEMENT.
C

IF (RR.GE.COUNT(N1)) GO TO 140
FRX(N1) = X(N1) + DX
FRY(N1) = Y(N1) + DY
FRZ (NI) = Z(N1) + DZ
COUNT(N1) = RR

C
140 RETURN

END

The basic idea of this subroutine is to compute the

value of the parameter s, where

0 sS 1
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such that the pressure head is zero. That is, use Equation

4.28 for a node not on the exit face or Equations 4.29 and

4.30 for a node on the exit face (NBC = 2). The changes in

coordinate values (variables DX, DY, and DZ) required to

move point N1 to the new free surface position are then

computed. Distance squared (in variable RR) is then

computed from these values and compared with the current

value of COUNT. If RR is less than COUNT, the position of

the free surface is computed along this line segment and

stored in FRX, FRY, and FRZ. COUNT is then updated to RR.

This position of the free surface is kept for node N1 until

a smaller RR comes along as a result of considering other

line segments.

Subroutine FIXEL

This subroutine performs the iterative process of rede-

fining the coordinates of the node points so elements are

either all below the free surface or collapsed onto it. Its

listing is given.

bSuROUTINE FIXEL
C
C
C THIS SUBROUTINE FIXES THE ELEMENTS CROSSED BY THE
C FREE SURFACE SO AN ELEMENT IS EITHER ALL BELOW THE
C FREE SURFACE OR COLLAPSED ONTO IT.
C
C

COMMON / GPID1 / NUMNP, NUMEL, NUMMAT, X(1000),
& Y(O00), Z(1000), FX(l000), NBC(1000), FLOW(!000),
& HLAST(1000)
COMMON / GRID2 / XKI(12), XK2(12), XK3(12), NP(9,

& 900), THETA(900), PHI(900), PSI(900)
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COMMON / FREE / FRX(1000), FRY(1000), FRZ(1000),
& COUNT(1000)

COMMON / BANARG / MBAND, NUMBLK, R(1000), C(120,60),
& ND, ND2
DIMENSION ISEG(2, 12)
DATA ISEG /1, 2, 2, 3, 3, 4, 4, 1, 1, 5, 2, 6, 3, 7,

& 4, 8, 5, 6, 6, 7, 7, 8, 8, 5/
C
C KEEP ITERATING UNTIL THERE IS NO CHANGE.
C

ICOUNT = 0
C

100 ICHANG = 0
ICOUNT = ICOUNT + 1
IF (ICOUNT.GT.200) THEN

PRINT*, ' AFTER 200 ITERATIONS THE SUBROUTINE',
& ' FIXEL ALGORITHM HAD NOT CONVERGED.'

RETURN
ENDIF

C
DO 600 N = 1, NUMEL

C
C CHECK IF THE FREE SURFACE INTERSECTS THE ELEMENT.
C

PMIN = 1.E30
PMAX = - PMIN
DO 200 I = 1, 8
II = NP(I, N)
P R(II) - Z(II)
PMIN = AMIN1(PMIN, P)
PMAX = AMAX1(PMAX, P)

200 CONTINUE
C
C IF THE ELEMENT IS ABOVE THE FREE SURFACE AND DOES
C NOT TOUCH IT, DON'T BOTHER WITH IT.
C

IF (PMAX.LT.0.) GO TO 600
C
C IF THE ELEMENT IS BELOW THE FREE SURFACE, DON'T
C BOTHER WITH IT.
C

IF (PMIN.GE.0.) GO TO 600
C
C THE ELEMENT IS CROSSED BY THE FREE SURFACE, SO
C CHECK EACH LINE SEGMENT.
C

DO 500 J = 1, 12
C

II = ISEG(I, J)
Ni = NP(II, N)
II = ISEG(2, J)
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N2 = NP(II, N)
C
C IF LINE SEGMENT N1-N2 IS A FREE SURFACE NODE AND A
C NODE ABOVE THE FREE SURFACE, COLLAPSE THE NODE
C ABOVE THE FREE SURFACE TO THE EXIT POINT NODE.
C

DO 300 K = 1, 2
C
C CONSIDER BOTH Nl-N2 AND N2-NI.
C

IF (K.EQ.2) THEN
NN = N1
N1 = N2
N2 = NN

ENDIF
C

IF ((COUNT(Nl).GT.0.).AND.(R(N2).LT.Z(N2))) THEN
X(N2) = X(NI)
Y(N2) = Y(NI)
Z(N2) = Z(Nl)
R(N2) = R(NI)
COUNT(N2) = 2.

C
C FLAG THAT A CHANGE HAS BEEN MADE.
C

ICHANG = 1
ENDIF

C
300 CONTINUE

C
500 CONTINUE

C
600 CONTINUE

C
C IF A CHANGE WAS MADE, REPEAT THE PROCESS.
C

IF (ICHANG.EQ.1) GO TO 100
C

RETURN
END

First, note that a maximum of 200 iterations are

allowed. Next, the maximum and minimum pressure heads for

the element are computed. If they are all greater than or

equal to zero, the element is completely under the free

surface. If they are all less than zero, the element is
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completely above the free surface and does not touch it. In

each of these cases the element needs no further action.

Otherwise, the algorithm given at the end of Chapter IV is

executed.

Here, each line segment of the element is considered

for the first node being a free surface node and the second

node of the line segment being above the free surface

(pressure head less than zero). When such a line segment is

found, node 2 is collapsed to node 1 of the line segment,

and node 2 is flagged as a special free surface node (COUNT

= 2).

After going through all the elements (do loop 600) with

no further collapses occurring, the iteration process is

terminated.

177



APPENDIX B

CONVERSION TO FEM FORMAT
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This appendix documents the program written to combine

blocks generated by the EAGLE program into a consolidated

FEM grid. This approach makes it very easy to generate

separate pieces and then combine them later. This approach

also makes it significantly easier than usual to apply

boundary conditions.

MAIN Program

The MAIN program is the driver for the rest of the

program and is given:

C THIS PROGRAM COMBINES EAGLE BLOCKS INTO ONE BIG
C FEM GRID.
C
C

PARAMETER (ND = 1000)
COMMON /OUTPUT/ X(ND), Y(ND), Z(ND), IBC(ND), BV(ND),

& IX(9, ND), THETA(ND), PHI(ND), PSI(ND), NUMNP, NUMEL,
& NUMMAT, NODVEL
CHARACTER COM * 3, ANAME * 20

C
NUMNP = 0
NUMEL = 0
NUMMAT = 0
NODVEL = 0

C
OPEN (7, ACCESS='DIRECT', RECL=16)
OPEN (8, FORM='UNFORMATTED')
OPEN (9, FORM='UNFORMATTED')

C
C PROCESS THE COMMANDS
C

100 PRINT*, '
PRINT*, 'COMMAND?'
READ (*, 110) COM

110 FORMAT(A)
IF ((COM.EQ.'INP').OR.(COM.EQ.'inp)) GO TO 400
IF ((COM.EQ.'COM').OR.(COM.EQ.'com)) GO TO 200
IF ((COM.EQ.'OUT').OR.(COM.EQ.'out), GO TO 500
IF ((COM.EQ.'BAN').OR.(COM.EQ.'ban)) GO TO 300
IF ((COM.EQ.'BC ).OR.(COM.EQ. bc ')) GO TO 600
IF ((COM.EQ.'CLE').OR.(COM.EQ.'cle)) GO TO 700
IF ((COM.EQ.'END').OR.(COM.EQ.'end)) GO TO 800
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PRINT 120
120 FORMAT(/ INP - INPUT A SINGLE FILE.' /

& COM - COMBINE SEVERAL FILES.' /
& OUT - OUTPUT A FILE.' /
& BAN - BANDWIDTH MINIMIZE.' /
& BC - APPLY BOUNDARY CONDITIONS.' /
& CLE - CLEAR PREVIOUS WORK.' /
& END - END EXECUTION OF PROGRAM.')
GO TO 100

C
C COMBINE THE GRIDS.
C

200 PRINT*, '
PRINT*, 'NUMBER OF FILES'
READ (*, *) NOFILE
CALL COMBIN(NOFILE, IBL)
GO TO 100

C
C BANDWIDTH MINIMIZE THE GRID.
C

300 CALL ADJAC
CALL BANMIN
GO TO 100

C
C READ A GRID.
C

400 CALL COMBIN(1, IBL)
GO TO 100

C
C OUTPUT THE GRID.
C

500 PRINT*,
PRINT*, 'OUTPUT FILE NAME FOR SEEPAGE/GROUNDWATER',

& ' MODEL (WITHOUT EXTENSIONS)?'
READ (*, 110) ANAME
NN =- NONBLK(ANAME)
OPEN (2, FILE=ANAME(l : NN) // '.sep',

& STATUS='UNKNOWN')
OPEN (3, FILE=ANAME(I : NN) // '.dim',

& STATUS='UNKNOWN')
CALL OUTFEM(IBL)
CLOSE (2)
CLOSE (3)
GO TO 100

C
C APPLY BOUNDARY CONDITIONS.
C

600 PRINT*, '

PRINT*, 'BLOCK NUMBER, IIB, JIB, KIB, 12B, J2B, K2B,',
& ' IBC, BV?'
READ (*, *) IBLNO, IIB, JiB, KIB, 12B, J2B, K2B, NBC,

& BCVAL
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CALL BC(IBLNO, IIB, JIB, KIB, 12B, J2B, K2B, NBC,
& BCVAL)
GO TO 100

C
C CLEAR PREVIOUS WORK.
C

700 NUMNP = 0
NUMEL = 0
NUMMAT = 0
NODVEL = 0
REWIND 7
REWIND 8
REWIND 9
GO TO 100

C
C TERMINATE PROCESSING.
C

800 CALL DONE
STOP
END

There are seven commands provided to accomplish the

task of creating a single FEM grid from individual blocks as

follows:

1. Input - Input a single EAGLE grid file.
2. Combine - Combine a group of EAGLE grid files.
3. Output - Output the FEM grid.
4. Bandwidth - Minimize the bandwidth of the FEM grid.
5. BC - Apply boundary conditions.
6. Clear - Clear previous work.
7. End - End execution of program.

A description of the subroutines supporting these commands

is now given.

Subroutine ADJAC

This subroutine produces an adjacency table giving the

nodes that are adjacent to a given node. It is used in the

bandwidth minimization process and is as follows:
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SUBROUTINE ADJAC
C
C
C THIS SUBROUTINE COMPUTES AN ADJACENCY TABLE FOR
C THE GENERATED MESH.
C
C

PARAMETER (ND = 1000)
COMMON /OUTPUT/ X(ND), Y(ND), Z(ND), IBC(ND), BV(ND),

& IX(9, ND), THETA(ND), PHI(ND), PSI(ND), NUMNP, NUMEL,
& NUMMAT, NODVEL
COMMON /ADJ/ JZ(ND, 9)
DIMENSION IADJ(8, 3)
DATA IADJ /2, 3, 4, 1, 6, 7, 8, 5, 4, 1, 2, 3, 8, 5,

& 6, 7, 5, 6, 7, 8, 1, 2, 3, 4/
C
C
C JZ - ARRAY CONTAINING THE NEIGHBORING NODES FOR
C EACH NODE (ADJACENCY TABLE). NO MORE THAN
C EIGHT NEAREST NEIGHBORS MAY EXIST FOR A
C GIVEN NODE.
C
C
C ZERO THE JZ ARRAY.
C

DO 200 N = 1, NUMNP
JZ(N, 9) = 0

200 CONTINUE
C
C CONSIDER EACH ELEMENT.
C

DO 1300 N = 1, NUMEL
C
C CHECK EACH NODE OF EACH ELEMENT.
C

DO 1200 L = 1, 8
C

NODP = IX(L, N)
C

DO 1100 M = 1, 3
C

LC = IADJ(L, M)
NODS = IX(LC, N)
KK = JZ(NODP, 9)

C
C PLACE THE SECONDARY NODE INTO THE ROW OF JZ
C ORRESPONDING TO THE PRIMARY NODE, IF IT HASN'T
C ALREADY BEEN DONE.
C

IF (KK) 700, 700, 900
C

700 JZ(NODP, 1) = NODS
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JZ(NODP, 9) = 1
GO TO 1100

C

900 DO 1000 K = 1, KK
IF (JZ(NODP, K).EQ.NODS) GO TO 1100

1000 CONTINUE
K = KK + 1
IF (K.GT.8) THEN

PRINT*, 'THE NODE', NODP, ' HAS MORE THAN EIGHT',
& ' LINES GOING 1NTO IT.'

CALL DONE
STOP

ENDIF
1050 JZ(NODP, K) = NODS

JZ(NO)P, 9) = K
C
1100 CONTINUE

C
1200 CONTINUE

C
1300 CONTINUE

C
RETURN
END

Subroutine BANMIN

This subroutine does the bandwidth minimization for the

FEM grid. Its listing is now given:

SUBROUTINE BANMIN
C
C
C THIS SUBROUTINE REDUCES THE BANDWIDTH OF A FEM
C CONFIGURATION.
C
C

PARAMETER (ND = 1000)
COMMON /OUTPUT/ X(ND), Y(ND), Z(ND), IBC(ND), BV(ND),

& IX(9, ND), THETA(ND), PHI(ND), PSI(ND), NUMNP, NUMEL,
& NUMMAT, NODVEL
COMMON /ADJ/ JZ(ND, 9)
COMMON /SCRAT/ NODE(ND), NNS(ND), NOS(ND)

C
C
C NOS - ARRAY CONTAINING THE NEW NODE NUMBERS WITH
C THE OLD NODE NUMBERS AS SUBSCRIPTS.
C
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C NNS - ARRAY CONTAINING THE OLD NODE NUMBERS WITH
C THE NEW NODE NUMBERS AS SUBSCRIPTS.
C
C NODE - ARRAY CONTAINING THE BEST NOS ARRAY.
C
C NBWMIN - MINIMUM MAXIMUM DIFFERENCE FOUND.
C
C
C COMPUTE THE MAXIMUM DIFFERENCE OF THE CURRENT
C CONFIGURATION.
C

NBW = 0
DO 200 N = 1, NUMEL
DO 100 J = 1, 7
Jl = IX(J, N)
KK = J + 1
DO 60 K = KK, 8
K1 = IX(K, N)
KD = IABS(JI - Kl)
NBW = MAXO (NBW, KD)

60 CONTINUE
100 CONTINUE
200 CONTINUE

C
PRINT 205, NBW

205 FORMAT (/ 'INITIAL MAXIMUM DIFFERENCE = ', 15)
C
C DETERMINE THE SMALLEST MAXIMUM DIFFERENCE
C POSSIBLE.
c

NBWMIN = NBW
C
C ITERATE TO A SOLUTION.
C

NOITER = MINC(NUMNP, 20)
DO 220 N = 1, NUMNP
NODE (N) N

220 CONTINUE
C

DO 1100 L = 1, NOITER
C
C INITIALIZE.
C

DO 300 N = 1, NUMNP
NNS(N) = 99999
NOS(N) = 0

300 CONTINUE

C
K = 1
NNS(1) = L

NOS(L) = 1
NDIFF = 0
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C
C PROCESS THE ADJACENCY TABLE.
C

DO 800 N = 1, NUMNP
C

ISUB = NNS(N)
NUM = JZ(ISUB, 9)

C

DO 700 M = 1, NUM
C

NBR = JZ(ISUB, M)
IF (NOS(NBR)) 400, 400, 700

400 K = K + 1
NOS(NBR) = K
NNS(K) = NBR

C
C CHECK IF MINIMUM MAXIMUM DIFFERENCE HAS BEEN
C EXCEEDED.
C

KD = IABS(N - K)
NDIFF = MAXO(NDIFF, KD)
IF (KD - NBWMIN) 500, 500, 1100

C
C CHECK IF ITERATION IS FINISHED.
C

500 IF (K - NUMNP) 700, 900, 900
C

700 CONTINUE
C

800 CONTINUE
C
C DETERMINE THE MAXIMUM DIFFERENCE OF THE CURRENT
C CONFIGURATION.
C

900 NBW = NDIFF
DO 920 N = 1, NUMEL
DO 910 J = 1, 7
Jl = IX(J, N)
Jl = NOS(Jl)
KK = J + 1
DO 905 K = KK, 8
Kl = IX(K, N)
K1 = NOS(Ki)
KD = IABS(JI - KI)
NBW = MAXO(NBW, KD)

905 CONTINUE
910 CONTINUE
920 CONTINUE

C
C CHECK FOR THE BEST CONFIGURATION.
C

IF (NBWMIN - NBW) 1100, 1100, 950
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C
950 NBWMIN = NBW

DO 1000 N = 1, NUMNP
NODE (N) = NOS (N)

1000 CONTINUE
C

PRINT 1010, L, NBWMIN
1010 FORMAT ('ITERATION = ', I5, 1OX, 'BEST MAXIMUM'

& ' DIFFERENCE = ', 15)
C
1100 CONTINUE

C
C SHUFFLE THE DATA.
C

DO 1200 N = 1, NUMNP
N1 = NODE(N)
NNS(N1) = N

1200 CONTINUE
C
C FIX THE NODE DATA.
C

REWIND 8
DO 1400 N = 1, NUMNP
N1 = NNS(N)
WRITE (8) X(NI), Y(NI), Z(Nl), IBC(NI), BV(NI)

1400 CONTINUE
REWIND 8
DO 1500 N = 1, NUMNP
READ (8) X(N), Y(N), Z(N), IBC(N), BV(N)

1500 CONTINUE
C
C FIX THE ELEMENT DATA.
C

DO 1700 N = 1, NUMEL
DO 1600 I = 1, 8
Ii = IX(I, N)
12 = NODE(I1)
IX(I, N) = 12

1600 CONTINUE
1700 CONTINUE

C
RETURN
END

The most difficult aspect of this subroutine is keeping

up with the new node numbers (the two arrays NOS and NNS

accommodate this). Finally, any number of tries can be made

as the starting point to renumber the grid up to the number
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of node points. This subroutine currently has the number of

iterations as 20.

Subroutine BC

Subroutine BC applies boundary conditions, and its

listing is now given:

SUBROUTINE BC(IBLNO, IlB, JlB, KIB, 12B, J2B, K2B,
& NBC, BCVAL)

C
C
C THIS SUBROUTINE APPLIES BOUNDARY CONDITIONS TO THE
C FACES OF BLOCKS.
C
C

PARAMETER (ND = 1000)
COMMON /OUTPUT/ X(ND), Y(ND), Z(ND), IBC(ND), BV(ND),

& IX(9, ND), THETA(ND), PHI(ND), PSI(ND), NUMNP, NUMEL,
& NUMMAT, NODVEL
DIMENSION IPICK(2, 2, 2), IFACE(4, 6), JNODE(4)
DATA IPICK /1, 2, 4, 3, 5, 6, 8, 7/
DATA IFACE /1, 5, 8, 4, 2, 3, 7, 6, 1, 2, 6, 5, 3, 4,

& 8, 7, 4, 3, 2, 1, 5, 6, 7, 8/
C
C GET SIZE OF BLOCK AND NUMBER OF ELEMENTS JUST
C BEFORE IT BEGINS.
C

READ (7, REC=IBLNO) 12, J2, K2, NEL
IROW = 12 - 1
IPLANE = (J2 - 1) * IROW

C
C APPLY VARIOUS BOUNDARY CONDITIONS, EXCEPT NBC =
C -2.
C

IF (NBC.EQ.-2) GO TO 3050
C

DO 3000 K = KlB, K2B
C

IF (K.LT.K2) THEN
KK = 1

ELSE
KK = 2

ENDIF
C

DO 2900 J = JIB, J2B
C

IF (J.LT.J2) THEN
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JJ = 1
ELSE

JJ = 2
ENDIF

C
DO 2800 I = IlB, 12B

C
IF (I.LT.12) THEN

II=1
ELSE

11 2
ENDIF

C
C GET NODE NUMBER.
C

MM =(K - KK) * IPLANE + (J -JJ) *IROW +I 11I 1
& + NEL
IPOS = IPICK(II, JJ, KK)
NN = IX(IPOS, MM)

C
C DO VARIOUS BOUNDARY CONDITIONS.
C

IF ((NBC.EQ.1).OR.(NBC.EQ.-i)) THEN
IBC(NN) NBC
BV(NN) =BCVAL

ELSE IF ((NBC.EQ.2).OR.(NBC.EQ.12)) THEN
IBC(NN) =NBC

BV(NN) =Z(NN)

ENDIF
C
2800 CONTINUE

C
2900 CONTINUE

C
3000 CONTINUE

C
GO TO 5000

C
C DO SPECIFIED DISCHARGE VELOCITY FOR A FACE.
C
3050 IF ((I1B.EQ.1).AND.(I2B.EQ.1)) THEN

JF = 1
Li = JiB
L2 = J2B - 1

Mli KiB
M2 = K2B - 1

LFACT = 12 - 1
MFACT = LFACT * (J2 - 1)
MST =NEL + 1

ELSE IF ((I1B.EQ.I2).AND.(I2B.EQ.12)) THEN
JF = 2
Li = JiB
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L2 = J2B - 1
Ml = KiB
M2 = K2B - 1
LFACT =12 - 1
MFACT = LFACT *(J2 - 1)
MST = MEL + 12 -1

ELSE IF ((J1B.EQ.1).AND.(J2B.EQ.1)) THEN
JF = 3
Li = IlB

L2 = 12B - 1

Ml = KiB
M2 = K2B - 1
LFACT = 1
MFACT = (12 - 1) * (J2 - 1)
MST = NEL + 1

ELSE IF ((J1B.EQ.J2).AND.(J2B.EQ.J2)) THEN
JF =4
Li = IlB

L2 = 12B - 1

Ml = KiB
M2 = K2B - 1

LFACT = 1
MFACT = (12 - 1) * (J2 - 1)
MST = NEL + (12 - 1) * (J2 - 2) + 1

ELSE IF ((K1B.EQ.1).AND.(K2B.EQ.1)) THEN
JF = 5
Li = IiB
L2 = 12B - 1

Ml = JiB
M2 = J2B - 1

LFACT = 1
MFACT = 12 - 1

MST = NEL + 1
ELSE IF ((K1B.EQ.K2).AND.(K2B.EQ.K2)) THEN

JF = 6
Li = IlB
L2 = 12B - 1

Ml = JiB
M2 = J2B - 1
LFACT = 1
MFACT = 12 - 1

MST = MEL + (12 - 1) *(J2 -1) *(K2 2 + 1
ENDIF

C
DO 3500 M =Ml, M2

C
DO 3400 L = Li, L2

C
C GET NODE NUMBERS.
C

MM = (L - 1) * LfACT + (M -1) *MFACT + MST
DO 3100 1 = 1, 4
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JPOS = IFACE(I, JF)
JJ = IX(JPOS, MM)
IBC(JJ) = -1
JNODE(I) = JJ

3100 CONTINUE
C
C SAVE RESULTS.
C

NODVEL = NODVEL + 1
WRITE (9) JNODE, BCVAL

C
3400 CONTINUE

C
3500 CONTINUE

C
5000 RETURN

END

This subroutines is roughly divided into two parts.

The first part applies boundary conditions 1, 2, 12, or -1

to a group on nodes, typically a sheet on the surface of the

block. The last section determines sets of four nodes

required for discharge velocity data and writes them to a

temporary file. Since the elements are not shuffled in

bandwidth minimization, the proper nodes can be obtained by

looking up the correct node of the correct element .n the

connectivity array. This process is greatly siv,.ified by

the arrays IPICK and IFACE.

Subroutine COMBIN

Subroutine COMBIN reads in any nu.nber of EAGLE grid

files and combines them into a sincie FEM grid. Its listing

follows.
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SUBROUTINE COMBIN(NOFTLE, IBL)
C
C
C THIS SUBROUTINE TAKES TWO OR MORE FILES CONTAINING
C EAGLE GRIDS AND COMBINES THEM INTO ONE GRID.
C
C

PARAMETER (ND = 1000)
COMMON /OUTPUT/ X(ND), Y(ND), Z(ND), IBC(ND), BV(ND),

& IX(9, ND), THETA(ND), PHI(ND), PSI(ND), NUMNP, NUMEL,
& NUMMAT, NODVEL
COMMON /SCRAT/ NOD(ND), IREPL(ND), BB(ND)
CHARACTER ANAME * 20
DIMENSION 12S(20), J2S(20), K2S(20)

C

IBL = 0
IZERO = 0

C

C LOOP OVER THE NUMBER OF FILES.
C

DO 1000 M = 1, NOFILE
C
C READ EAGLE GRID FILE.
C

10 PRINT 15, M
15 FORMAT(/ ' FILE NAME NO.', 13, '

20 READ (*, 25) ANAME
25 FORMAT(A)

OPEN (2, FILE=ANAME, STATUS='OLD', IOSTAT=ISTAT)
IF (ISTAT.NE.0) THEN

PRINT*, ' I
NN = NONBLK(ANAME)
PRINT*, 'INCORRECT FILE NAME - ', ANAME(I NN),

& ' - TRY AGAIN.'
GO TO 20

ENDIF
C
C GET THE NUMBER OF BLOCKS.
C

READ (2, *) NUMBLK
IF (NUMBLK.GT.20) THEN

PRINT*, 'NO MORE THAN 20 BLOCKS MAY BE IN',
& ' ONE FILE.'

STOP
ENDIF

C
C GET THE GRID DIMENSIONS FOR ALL BLOCKS.
C

DO 30 L = 1, NUMBLK
READ (2, *) 12S(L), J2S(L), K2S(L)

30 CONTINUE
C
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C LOOP OVER THE NUMBER OF BLOCKS.
C

DO 900 L = 1, NUMBLK
C
C GET THE SIZE OF THE BLOCK.
C

12 = 12S(L)
J2 = J2S(L)
K2 = K2S(L)
IJ2 = 12 * J2

C
C OUTPUT BLOCK DATA TO TEMPORARY FILE.
C

IBL = IBL + 1
WRITE (7, REC=IBL) 12, J2, K2, NUMEL

C
C READ THE (X, Y, Z) DATA POINTS.
C

NUM = 12 * J2 * K2
ND1 = NUMNP + 1
NDTOT = NUMNP + NUM
READ (2, *) (X(I), I = ND1, NDTOT), (Y(I), I = ND1,
& NDTOT), (Z(I), I = ND1, NDTOT)

C
C COMPUTE ELEMENT DATA.
C

NN = NUMNP
MM = NUMEL

C
C GET MATERIAL TYPE NUMBER, THETA, PHI, AND PSI.
C

PRINT 42, L
42 FORMAT(/ ' FOR BLOCK', 13, ' MATERIAL TYPE NUMBER,

& THETA, PHI,', ' AND PSI?')
READ*, MAT, TH, PH, PS
NUMMAT MAXO (NUMMAT, MAT)

C
DO 70 K 1, K2 - 1

C
DO 60 J 1 1, J2 - 1

C
DO 50 I 1, 12 - 1

C
NN = NN + 1
MM =MM + 1

C
IX(l, MM) = NN
IX(2, MM) = IX(l, MM) + 1
IX(3, MM) = IX(2, MM) + 12
IX(4, MM) = IX(3, MM) - 1

C
DO 45 II = 1, 4
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IX(II+4, MMv) = IX(II, MM) + 1J2
45 CONTINUE

C
IX(9, MM) = MAT
THETA(MM) = TH
PHI(MM) = PH
PSI(MM) = PS

50 CONTINUE
C

NN = NN + 1
C

60 CONTINUE
C

NN = NN + 12
C

70 CONTINUE
C

NUMEL = MM
C
C INITIATE THE NODE ARRAY.
CI

DO 220 1 =,l, NDTOT
NOD(I) = I
IREPL(I) = 0

220 CONTINUE
C
C REMOVE DUPLICATE NODES.
C

IF (L.EQ.1) THEN
Ni = 1

ELSE
Ni = ND1

ENDIF
C

DO 300 N = Ni, NDTOT
C

XCK = X(N)
YCK = Y(N)
ZCK = Z(N)
IF (MOD(N, 1000).EQ.0) PRINT*, 'REMOVING DUPLICATE '

& 'NODES, N =', N, ' NUMNP =', NUMNP
C

DO 240 I = 1, N-i
IF (IREPL(I).EQ.i) GO TO 240
CK = ABS(X(I) - XCK) + ABS(Y(I) - YCK) + ABS(Z(I)-
& ZCK)
IF (CK - 1.E-2) 250, 250, 240

240 CONTINUE
GO TO 300

C
250 IREPL(N) = 1

195



NOD(N) = NOD(I)
IF (N.EQ.NDTOT) GO TO 300

C
260 NP1 = N + 1

DO 270 I = NP1, NDTOT
NOD(I) = NOD(I) - 1

270 CONTINUE
C

300 CONTINUE
C
C UPDATE THE NODE DATA.
C

LL = NUMNP
DO 320 I = ND1, NDTOT
IF (IREPL(I).EQ.1) GO TO 320
LL = LL + 1
X(LL) = X(I)
Y(LL) = Y(I)
Z(LL) = Z(I)
IBC(LL) = IBC(I)
BV(LL) = BV(I)

320 CONTINUE
C

NUMNP = LL
C
C UPDATE THE ELEMENT DATA.
C

DO 340 I = 1, NUMEL
DO 330 J = 1, 8
INOD = IX(J, I)
IX(J, I) = NOD(INOD)

330 CONTINUE
340 CONTINUE

C
900 CONTINUE

C
CLOSE (2)

C
1000 CONTINUE

C
RETURN
END

After the EAGLE data is read into memory, the element

connectivity data is then created. Next, duplicate nodes

are removed by considering distance squared between two

given node points. When nodes have been removed, the
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remaining node points are renumbered so they are

consecutively numbered. With this done, the element connec-

tivity must then be modified to reflect the new node

numbers.

Subroutine DONE

Subroutine DONE closes all files that are still open,

and its listing is given.

SUBROUTINE DONE
C
C
C THIS SUBROUTINE WRAPS THINGS UP.
C
C

CLOSE (7)
CLOSE (8)
CLOSE (9)

C
RETURN
END

Subroutine OUTFEM

Subroutine OUTFEM writes the REM grid in 3-D FEM

seepage/groundwater format. Its listing is as follows:

SUBROUTINE OUTFEM(IBL)
C
C
C THIS SUBROUTINE OUTPUTS A FILE FOR THE 3-D SEEPAGE
C GROUNDWATER FEM PROGRAM.
C
C

PARAMETER (ND = 1000)
COMMON /OUTPUT/ X(ND), Y(ND), Z(ND), IBC(ND), BV(ND),

& IX(9, ND), THETA(ND), PHI(ND), PSI(ND), NUMNP, NUMEL,
& NUMMAT, NODVEL
CHARACTER TITLE * 80
DIMENSION JNODE(4)

C
C DO TITLE.
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C
PRINT*,
PRINT*, 'TITLE CARD?'
READ 100, TITLE

100 FORMAT(A80)
WRITE (2, 100) TITLE

C
C DO NUMBER OF NODE POINTS, NUMBER OF ELEMENTS,
C NUMBER OF DIFFERENT MATERIALS, NUMBER OF DISCHARGE
C VELOCITY CARDS, AND DATUM.
C

PRINT*,
PRINT*, 'DATUM?'
READ (*, *) DATUM
WRITE (2, 200) NUMNP, NUMEL, NUMMAT, NODVEL, DATUM

200 FORMAT(415, F10.2)
C
C ADJUST BOUNDARY CONDITION DATA FOR IBC = 2 AND
C IBC =12.
C

DO 205 I = 1, NUMNP
IF ((IBC(I).EQ.2).OR.(IBC(I).EQ.12)) BV(I) = BV(I) -

& DATUM
205 CONTINUE

C
C DO MATERIAL DATA.
C

DO 250 I = 1, NUMMAT
PRINT 210, I

210 FORMAT(/ ' KI, K2, AND K3 FOR MATERIAL TYPE', 13,
&

READ (*, *) FK1, FK2, FK3
WRITE (2, 220) I, FK1, FK2, FK3

220 FORMAT(I5, 3E10.3)
250 CONTINUE

C
C DO NODES.
C

IF (NUMNP.EQ.0) GO TO 1000
DO 400 I = 1, NUMNP
WRITE (2, 300) I, IBC(I), X(I), Y(I), Z(I), BV(I)

300 FORMAT(215, 4F10.2)
400 CONTINUE

C
C DO ELEMENTS.
C

DO 600 J = 1, NUMEL
WRITE (2, 500) J, (IX(I, J), I = 1, 9), THETA(J)

& PHI(J) , PSI(J)
500 FORMAT(10I5, 3F10.2)
600 CONTINUE

C
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C DO DISCHARGE VELOCITY DATA.
C

IF (NODVEL.EQ.0) GO TO 900
REWIND 9
DO 800 J = 1, NODVEL
READ (9) JNODE, BCVAL
WRITE (2, 700) JNODE, BCVAL

700 FORMAT(415, F10.2)
800 CONTINUE

C
C DO GRID DIMENSION DATA.
C

900 WRITE (3, 200) IBL
DO 910 I = 1, IBL
READ (7, REC = I 12, J2, K2, NEL
WRITE (3, 200) 12, J2, K2

910 CONTINUE
C
1000 RETURN

END

Additional information is obtained as needed as the

output process is done. This includes a title line, the

datum, and material data. Notice that the head values are

corrected by the datum if boundary condition 2 or 12 is

specified.

Function NONBLK

This function counts the number of characters in a file

name so the extensions, .egl, .eg2, .dim, .sol, etc. can be

properly attached. Its listing is now given:

FUNCTION NONBLK(FILENM)
C
C
C THIS FUNCTION COMPUTES THE NUMBER OF NON-BLANK
C CHARACTERS IN THE FILE NAME FILENM. IT WORKS
C BY LOOKING FOR THE FIRST BLANK CHARACTER.
C
C

CHARACTER FILENM * (*)
C
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N = 0
DO 100 I = 1, 100
IF (FILENM(I :I).EQ.' 1) GO TO 200
N =N + 1

100 CONTINUE
C

200 NONBLK = N
RETURN
END
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APPENDIX C

CONVERSION TO FAST FORMAT
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This appendix contains the subroutine to convert the

output from the unstructured finite element grid to the

multiblocked structured finite volume grid format used by

FAST. Although FAST was written primarily to display compu-

tational fluid dynamics (CFD) data, it can also be used to

present other phenomena as well. The listing of the subrou-

tine is now given.

SUBROUTINE FASTOT(DATUM)
C
C
C THIS SUBROUTINE CALCULATES THE POSTPROCESSOR FILE
C FOR FAST.
C
C

PARAMETER (NDX = 25000)
PARAMETER (ND = 1250)
PARAMETER (ND2 = ND * 2)
COMMON / GRID1 / NUMNP, NUMEL, NUMMAT, X(NDX), Y(NDX),

& Z(NOX), FX(NDX), NBC(NDX), FLOW(NDX), HLAST(NDX)
COMMON / GRID2 / XKI(12), XK2(12), XK3(12), NP(9,

& NDX), THETA(NDX), PHI(NDX), PSI(NDX)
COMMON / FREE / FRX(NDX), FRY(NDX), FRZ(NDX),
& COUNT(NDX)
COMMON / BANARG / MBAND, NUMBLK, R(NDX), C(ND2, ND)
DIMENSION VX(NDX), VY(NDX), VZ(NDX), Q(NDX, 8)
EQUIVALENCE (FRX, VX), (FRY, VY), (FRZ, VZ), (C, Q)
DIMENSION IPICK(2, 2, 2)
DATA IPICK /1, 2, 4, 3, 5, 6, 8, 7/

C
C COMPUTE MAXIMUM AND MINIMUM HEAD.
C

HMIN = 1.E30
HMAX = - HMIN
DO 100 I = 1, NUMNP
HMIN = AMIN1(R(I) - DATUM, HMIN)
HMAX = AMAXI(R(I) - DATUM, HMAX)

100 CONTINUE
RDH = 1. / (HMAX - HMIN)

C
C SET AERODYNAMIC DATA.
C

FSMACH = HMIN
ALPHA HMAX
RE = 1.
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TIME = 0.
C
C WRITE NUMBER OF BLOCKS.
C

READ (3, *) IBL
WRITE (12, 130) IBL
WRITE (13, 130) IBL

130 FORMAT(3I5)
C
C WRITE GRID DIMENSION DATA.
C

DO 150 N 1, IBL
READ (3, *) 12, J2, K2
WRITE (12, 130) 12, J2, K2
WRITE (13, 130) 12, J2, K2

150 CONTINUE
C
C WRITE SOLUTION FOR ALL GRIDS.
C

REWIND 3
READ (3, *) IBL
NEL = 0

C
DO 1000 N 1, IBL

C
READ (3, *) 12, J2, K2
IROW = 12 - 1
IPLANE = (J2 - 1) * IROW

C
C WRITE PRELIMINARY DATA.
C

WRITE (12, 300) FSMACH, ALPHA, RE, TIME
300 FORMAT(6(IX, E11.5))

C
C ACCUMULATE Q VECTOR WITH RESULTS IN IJK ORDER.
C

INOD = 0
C

DO 800 K = 1, K2
C

KK = 1
IF (K.EQ.K2) KK = 2

C
DO 700 J = 1, J2

C
JJ = 1
IF (J.EQ.J2) JJ = 2

C
DO 600 I = 1, 12

C
II = 1
IF (I.EQ.I2) II = 2
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C
C GET NODE NUMBER.
C

MM = (K - KK) * IPLANE + (J - JJ) * IROW + I - II + 1
& + NEL
IPOS = IPICK(II, JJ, KK)
NN = NP(IPOS, MM)

C
C FOR NODES ABOVE THE FREE SURFACE SET HEAD EQUAL TO
C ELEVATION.
C

H = R(NN)
IF (H.LT.Z(NN)) H = Z(NN)

C
C NORMALIZE HEAD BETWEEN 1 AND 2.
C

HN = (H - DATUM - HMIN) * RDH + 1.
C
C COMPUTE Q.
C

INOD = INOD + 1
Q(INOD, 1) = HN
Q(INOD, 2) = VX(NN) * HN
Q(INOD, 3) = VY(NN) * HN
Q(INOD, 4) = VZ(NN) * HN
Q(INOD, 5) = H - DATUM

C
C USE THE LAST THREE POSITIONS FOR Q FOR THE NEW
C (X, Y, Z).
C

Q(INOD, 6) = X(NN)
Q(INOD, 7) = Y(NN)
Q(INOD, 8) = Z(NN)

C
600 CONTINUE

C
700 CONTINUE

C
800 CONTINUE

C
C OUTPUT Q.
C

WRITE (12, 300) ((Q(I, J), I = 1, INOD), J = 1, 5)
WRITE (13, 300) ((Q(I, J), I = 1, INOD), J = 6, 8)

C
NEL = (12 - 1) * (J2 - 1) * (K2 - 1) + NEL

C
1000 CONTINUE

C
CLOSE (7)

C

205



RETURN

END

Because in an unconfined flow problem the original grid

is modified, both a file containing the new grid and a file

containing the results are written. C programs were written

to take the ASCII output files from this subroutine and

convert them to binary files (FORTRAN binary WRITE's will

not work). The C programs could, of course, be converted to

functions and called from FASTOT as well. Because a totally

different flow is being modeled, the preliminary data such

as free stream Mach Number, angle of attack, and Reynold's

Number are used for other things. Mach Number has minimum

head stored in its place, angle of attack has maximum head,

and Reynold's Number is set to 1. The unconfined flow part

of the seepage/groundwater solver is a solution to a system

of nonlinear equations rather than using time dependent

equations and allowing the computation to converge to a

steady-state condition. Therefore, integration time is not

known, and it is set to zero.

The remaining data to be written to the output file are

components of the Q' vector
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P

Pu

Q' = pv

Pw

U

where

p = density

u = x component of velocity

v = y component of velocity

w = z component of velocity

U = energy

Again, because of the difference in applications, total head

instead of density and discharge velocity instead of

velocity are used. In fact, head is normalized between one

and two as follows:

-n + 1
h-ax hmin

where

h = normalized headn

hmin = minimum head

h = maximum head

This normalization prevented division by zero by FAST in

computing the components of velocity
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U L 2

Q1

V - 3

Q1

W - 4

Q,

The momentum type components are then written as h,(v),

where {v} is the discharge velocity vector. Energy is not

used, so the original values of head are output instead.

The array IPICK makes it significantly easier to choose

one of the eight nodes of a given element on which to write

information (see Chapter V under the heading, "Scientific

Visualization," and the subheading, "Conversion from Finite

Element to Finite Volume Format," for more details).

Note also that all values of the Q' vector are first

computed and then each component is written to the output

file. This is because FAST format (originally PLOT3D)

requires all values of a given component of the Q vector to

be written before another component is processed.
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APPENDIX D

GRID GENERATION DATA
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This appendix gives the data required to generate the

elliptic grid for the two-well-in-an-aquifer problem given

in Chapter VI. These include two 0 blocks generated by

EAGLE, two plugs generated by EAGLE, and the data to combine

and prepare these data into FEM seepage/groundwater format.

Surface Generation Data

The data for the surface generation portion of EAGLE

for the first well 0 grid is now given.

$ 'point', point=1, r=175.,-200.,0. $
$ 'point', point=2, r=175.,300.,0. $
$ 'point', point=3, r=-250.,300.,0. $
$ 'point', point=4, r=-250., -200.,0. $
$ 'point', point=5, r=175.,-200.,120. $
$ 'point', point=6, r=175.,300.,120. $
$ 'point', point=7, r=-250.,300.,120. $
$ 'point', point=8, r=-250.,-200., 120. $
$ 'setnum', segment=l, points=13 $
$ 'setnum', segment=2, points=6 $
$ 'setnum', segment=3, points=25 $
$ 'setnum', segment=4, points=9 $
$ 'setnum', segment=5, points=17 $
$ 'setval', number=l, value=.002 $
$ 'setval', number=2, value=.04 $
$ 'setval', number=3, value=.02 $
$ 'conicur', points=-2, type='circle', radius=l.,

angle=59.7,-48.8, coreout=5 $
$ 'conicur', points=-2, type='circle', radius=l.,

angle=129.8,59.7, coreout=6 $
$ 'conicur', points=-2, type='circle', radius=l.,

angle=218.7,129.8, coreout=7 $
$ 'conicur', points=-2, type='circle', radius=l.,

angle=-48.8,-141 .3, coreout=8 $
$ 'trans', corein=5, origin=0.,0.,80., coreout=49 $
$ 'trans', corein=5, origin=0.,0.,120., coreout=45 $
$ 'getend', corein=49, point='first', end='first' $
$ 'getend', corein-=45, pcint=-'first', end='last' $
$ 'line', points=-4, space=-2, coreout=13 $
$ 'getend', corein=49, point='first', end='first' $
$ 'getend', corein=5, point='first', end='last' $
$ 'line', points=-5, space=-3 $
$ 'switch', reorder='reversel' $
$ 'insert', corein=13, coreout=13 $
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$ 'line', points=-3, r1=2, r2=6, coreout=17 $
$ 'getend', corein=5, point='first', end='first' $
$ 'line', points=-l, r2=2, space=-l, coreout=2 $
$ 'trans', corein=2, origin=0.,0.,120., coreout=26 $
$ 'edgecur', edge='lowerl', corein=13 $
$ 'edgecur', edge='upperl', corein=17 $
$ 'edgecur', edge='lower2', corein=2 $
$ 'edgecur', edge='upper2', corein=26 $
$ 'transur', coreout=51 $
$ 'current', corein=51, coreout=52 $
$ lbouncur', corein=l3 $
$ 'rotate', angpts=-2, angle=0.,-l08.5, axcos=0.,0.,l. $
$ 'switch', reorder='switch', coreout=41 $
$ 'bouncur', corein=13 $
$ 'rotate', angpts=-2, angle=-lO8.5, -201., axcos=0.,0.,l. $
$ 'switch', reorder='switch', coreout=42 $
$ 'bouncur' , corein=13 $
$ 'rotate', angpts=-2, angle=-20.,-289.9, axcos=0.,0.,l. $
$ 'switch', reorder='switch', coreout=43 $
$ 'bouncur', corein=13 $
$ 'rotate', angpts=-2, angle=70.1,0., axcos=0.,0.,1. $
$ 'switch', reorder='switch', coreout=44 $
$ 'current', corein=41 $
$ 'insert', corein=42 $
$ 'insert', corein=43 $
$ 'insert', corein=44, coreout=53 $
$ 'line', points=-3, rlh 1 r2=5, coreout=20 $
$ 'line', points=-3, r1=2, r2=6, coreout=17 $
$ 'line', points=-3, r1=3, r2=7, coreout=l8 $
$ 'line', points=-3, r1=4, r2=8, coreout=19 $
$ 'line', points=-2, r1=2, r2=1, coreout=9$
$ 'line', points=-2, r1=3, r2=2, coreout=l0 $
$ 'line', points=-2, r1=4, r2=3, coreout=ll $
$ 'line', points=-2, rl=l, r2=4, coreout=l2 $
$ 'line', points=-2, rl=6, r2=5, coreout=22 $
$ 'line', points=-2, rl=7, r2=6, coreout=23 $
$ 'line', points=-2, r1=8, r2=7, coreout=24 $
$ 'line', points=-2, r1=5, r2=8, coreout=21 $
$ 'edgecur', edge='lowerl', corein=17 $
$ 'edgecur', edge='upperl', corein=20 $
$ 'edgecur', edge='lower2', corein=9 $
$ 'edgecur', edge='upper2', corein=22 $
$ 'transur', coreout=41 $
$ 'edgecur', edge='lowerl, corein=20 $
$ 'edgecur', edge='upperl', corein=19 $
$ 'edgecur', edge='lower2', corein=12 $
$ 'edgecur', edge='upper2', corein=21 $
$ 'transur', coreout=42 $
$ 'edgecur', edge='lowerl, corein=19 $
$ 'edgecur', edge='upperl', corein=18 $
$ 'edgecur', edge='lower2', corein=l1 $
$ 'edgecur', edge='upper2', corein=24 $
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$ 'transur', coreout=43 $
$ 'edgecur', edge='lowerl, corein=l8 $
$ 'edgecur', edge='upperl', corein=l7 $
$ 'edgecur', edge='lower2', corein=lO $
$ 'edgecur', edge='upper2', corein=23 $
$ 'transur' , coreout=44 $
$ 'current', corein=41 $
$ 'insert', corein=42 $
$ 'insert', corein=43 $
$ 'insert', corein=44, coreout=54 $
$ 'getend', corein=5, point='last', end='first' $
$ 'line', points=-l, r2=1, space=-l, coreout=l $
$ 'getend', corein=7, point='last', end='first' $
$ 'line', points=-l, r2=3, space=-l, coreout=3 $
$ 'getend', corein=8, point='last', end='first' $
$ 'line', points=-l, r2=4, space=-l, coreout=4 $
$ 'edgecur', edge='lowerl', corein=2 $
$ 'edgecur', edge='upperl', corein=l $
$ 'edgecur', edge='lower2', corein=5 $
$ 'edgecur', edge='upper2', corein=9 $
$ 'transur', coreout=4l $
$ 'edgecur', edge='lowerl, corein=l $
$ 'edgecur', edge='upperl', corein=4 $
$ 'edgecur', edge='lower2', corein=8 $
$ 'edgecur', edge='upper2', corein=l2 $
$ 'transur', coreout=42 $
$ 'edgecur', edge='lowerl', corein=4 $
$ 'edgecur', edge='upperl', corein=3 $
$ 'edgecur', edge='lower2', corein=7 $
$ 'edgecur', edge='upper2', corein=ll $
$ 'transur', coreout=43 $
$ 'edgecur', edge='lowerl, corein=3 $
$ 'edgecur', edge='upperl, corein=2 $
$ 'edgecur', edge='lower2', corein=6 $
$ 'edgecur', edge='upper2', corein=lO $
$ 'transur', coreout=44 $
$ 'current', corein=41 $
$ 'insert', corein=42 $
$ 'insert', corein=43 $
$ 'insert', corein=44, coreout=55 $
$ 'trans', corein=55, origin=O.,O.,120., coreout=56 $
$ 'trans', corein=51,-56, origin==250.,200.,O.,

coreout=51,-56 $
$ 'combine', content='yes', corein=51 ,-56, fileout=l
$ 'combine', head='yes', form='e', triad='yes',

corein=51,-56, fileout=2 $
$ 'combine', form='plot3d', corein=51,-56, fileout=3,

filnam='aq3.so' $
$ 'end' $

Figure 79 shows the line segment numbers.

213



23

24 2

21

13
15 14 16

18 17

19 120
10

3. 6

11 2
7

4 
/

12

Figure 79. Surface Generation Line Numbers
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The very versatile thing about the approach taken is that

once the first piece is configured, the second piece of its

type can be created by changing the coordinates and a few

parameters set at the beginning of the run-stream.

Bottom surface 55 could have been more efficiently

generated by first combining the circular segments into one

line segment (lower #2), combining the straight line

segments into one segment (upper #2), and taking one segment

(say line segment #1) as lower #1 and upper #1 in a single

transfinite surface operation. The analogous thing is, in

fact, what is done for the grid generation code as surface

51 is the same as surface 52, which is the cut.

The surface generation data for the second well and the

two plugs are now given.

Well 0 Grid No. 2

$ 'point', point=l, r=400.,-250.,0. $
$ 'point', point=2, r=400.,250.,0. $
$ 'point', point=3, r=-175.,250.,0. $
$ 'point', point=4, r=-175.,-250.,0. $
$ 'point', point=5, r=400.,-250.,120. $
$ 'point', point=6, r=400.,250.,120. $
$ 'point', point=7, r=-175.,250.,120. $
$ 'point', point=8, r=-175.,-250.,120. $
$ 'setnum', segment=l, points=13 $
$ 'setnum', segment=2, points=6 $
$ 'setnum', segment=3, points=25 $
$ 'setnum', segment=4, points=17 $
$ 'setnum', segment=5, points=9 $
$ 'setval', number=l, value=.002 $
$ 'setval', number=2, value=.02 $
$ 'setval', number=3, value=.04 $
$ 'conicur', points=-2, type='circle', radius=2.,

angle=32.,-32, coreout=5 $
$ 'conicur', points=-2, type='circle', radius=2.,

angle=125.,32., coreout=6 $
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$'conicur', points=-2, type='circle', radius=2.,
angle=235.,125., coreout=7 $

$'conicur', points=-2, type='circle', radius=2.,
angle=-32.,-l25., coreout=8 $

$'trans', corein=5, origin=O.,O. ,40 *, coreout=49 $
$'trans', corein=5, origin=0.,O.,120., coreout=45 $
$ getend', corein=49, point='first', end='first' $
$ getend', corein=45, point='first', end='last' $
$'line', points=-4, space=-2, coreout=13 $

$ 'getend', corein=49, point='first', end='first' $
$ 'getend', corein=5, point='first', end='last' $
$ 'line', points=-5, space=-3 $
$ 'switch', reorder='reversel' $
$ 'insert', corein=13, coreout=13 $
$ 'line', points=-3, r1=2, r2=6, coreout=17 $
$ 'getend', corein=5, point='first', end='first' $
$ 'line', points=-l, r2=2, space=-l, coreout=2 $
$ 'trans', corein=2, origin=O.,O.,120., coreout=26 $
$ 'edgecur', edge='lowerl', corein=13 $
$ 'edgecur', edge='upperl', corein=17 $
$ 'edgecur', edge='lower2', coreain=2 $
$ 'edgecur', edge='upper2', corein=26 $
$ 'transur', coreout=5l $
$ 'current', corein=51, coreout=52 $
$ 'bouncur', corein=13 $
$ 'rotate', angpts=-2, angle=0.,-64., axcos=O., 0., 1. $
$ 'switch', reorder='switch', coreout=41 $
$ 'bouncur', corein=13 $
$ 'rotate', angpts=-2, angle=-64. ,-157 *, axcos=O., 0.,l. $
$ 'switch', reorder='switch', coreout=42 $
$ 'bouncur', corein=13 $
$ 'rotate', angpts=-2, angle=-l57., -267., axcos=0 .10.,l.$
$ 'switch', reorder='switch', coreout=43 $
$ 'bouncur', corein=13 $
$ 'rotate', angpts=-2, angle=93.,0., axcos=0.,0.,l. $
$ 'switch', reorder='switch', coreout=44 $
$ 'current', corein=41 $
$ 'insert', corein=42 $
$ 'insert', corein=43 $
$ 'insert', corein=44, coreout=53 $
$ 'line', points=-3, rl=l, r2=~5, coreout=20 $
$ 'line', points -3, r1=2, r2=6, coreout=l7 $
$ 'line', points=-3, r1=3, r2=7, coreout=18 $
$ 'line', points=-3, r1=4, r2=8, coreout=l9 $
$ 'line', pointsz=-2, r1=2, r2=1, coreout=9 $
$ 'line', points=-2, rl=3, r2=2, coreout=l0 $
$ 'line', points=-2, r1=4, r2=3, coreout=ll $
$ 'line', points=-2, r1=1, r2=4, coreout=12 $
$ 'line', points=-2, r1=-6, r2=5, coreout 22 $
$ 'line', points=-2, r1=7, r2=6, coreout=23 $
$ 'line', points=-2, rl=8, r2=7, coreout=24 $
$ 'line', points=-2, r1=5, r2=8, coreout=21 $
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$ 'edgecur', edge='lowerl', corein=17 $
$ 'edgecur', edge='upperl', corein=20 $
$ 'edgecur', edge='lower2', corein=9 $
$ 'edgecur', edge='upper2', corein=22 $
$ 'transur', coreout=41 $
$ 'edgecur', edge='lowerl, corein=20 $
$ 'edgecur', edge='upperl', corein=l9 $
$ 'edgecur', edge='lower2', corein=12 $
$ 'edgecur', edge='upper2', corein=2l $
$ 'transur', coreout=42 $
$ 'edgecur', edge='lowerl, corein=19 $
$ 'edgecur', edge='upperl', corein=18 $
$ 'edgecur', edge='lower2', corein=ll $
$ 'edgecur', edge='upper2', corein=24 $
$ 'transur', coreout=43 $
$ 'edgecur', edge='lowerl, corein=18 $
$ 'edgecur', edge='upperl, corein=17 $
$ 'edgecur', edge='lower2', corein=1O $
$ 'edgecur', edge='upper2', corein=23 $
$ 'transur', coreout=44 $
$ 'current', corein=41 $
$ 'insert', corein=42 $
$ 'insert', corein=43 $
$ 'insert', corein=44, coreout=54 $
$ 'getend', corein=5, point='last', end='first' $
$ 'line', points=-1, r2=1, space=-l, coreout=l $
$ 'getend', corein=7, point='last', end='first' $
$ 'line', points=-l, r2=3, space=-l, coreout=3 $
$ 'getend', corein=8, point='last', end='first' $
$ 'line', points=-l, r2=4, space=-l, coreout=4 $
$ 'edgecur', edge='lowerl, corein=2 $
$ 'edgecur', edge='upperl, corein=i $
$ 'edgecur', edge='lower2', corein=5 $
$ 'edgecur', edge='upper2', corein=9 $
$ 'transur', coreout=41 $
$ 'edgecur', edge='lowerl, corein=l $
$ 'edgecur', edge='upperl, corein=4 $
$ 'edgecur', edge='lower2', corein=8 $
$ 'edgecur', edge='upper2', corein=12 $
$ 'transur', coreout=42 $
$ 'edgecur', edge='lowerl, corein=4 $
$ 'edgecur', edge='upperl, corein=3 $
$ 'edgecur', edge='lower2', corein=7 $
$ 'edgecur', edge='upper2', corein=l1 $
$ 'transur', coreout=43 $
$ 'edgecur', edge='lowerl, corein=3 $
$ 'edgecur', edge='upperl, corein=2 $
$ 'edgecur', edge='lower2', corein=6 $
$ 'edgecur', edge='upper2', corein=1O $
$ 'transur', coreout=44 $
$ 'current', corein=41 $
$ 'insert', corein=42 $

217



$ 'insert', corein=43 $
$ 'insert', corein=44, coreout=55 $
$ 'trans', corein=55, origin=0.,0.,120., coreout=56 $
$ 'trans', corein=51,-56, origin=600.,250.,0.,

coreout=51,-56 $
$ 'combine', content='yes', corein=51,-56, fileout=l
$ 'combine', head='yes', form='e', triad='yes',

corein=51 ,-56, fileout=2 $
$ 'combine', form='plot3d', corein=51,-56, fileout=3,

filnam='aq4.so' $
$ 'end' $

Plug No. 1

$ 'point', point=l, r=l.,0 .,0. $
$ 'point', point=2, r=O., 1.,0. $
$ 'point', point=3, r=-l.,0.,0. $
$ 'point', point=4, r=0.,-l.,0. $
$ 'point', point=5, r=l.,0.,80. $
$ 'point', point=6, r=0.,l.,80. $
$ 'point', point=7, r=-1.,O.,80. $
$ 'point', point=8, r=O.,-l.,80. $
$ 'setnum', segment=1, points=6 $
$ 'setnum', segment=3, points=17 $
$ 'setval', number=l, value=.02 $
$ 'conicur', points--l, type='circle', radius=l.,

angle=-141.3,-48.8, coreout=1 $
$ 'conicur', points=-l, type='circle', radius=l.,

angle=-42 .,8,59.7, coreout=2 $
$ 'conicur', points=-1, type='circle', radius=l.,

angle=129.8,59.7, coreout=3 $
$ 'conicur', points=-1, type='circle', radius=l.,

angle=218.7,129.8, coreout=4 $
$ 'line', points=-3, r1=5, r2=1, space=-l $
$ 'switch', reorder='reversel', coreout=5 $
$ 'bouncur', corein=5 $
$ 'rotate', angpts=-l, angle=-141.3,-48.8, axcos=0.,0.,l.$
$'switch', reorder='switch', coreout=23 $
$ bouncur', corein=5 $
$'rotate', angpts=-l, angle=-48.8,59.7, axcos=O.,O.,l. $
$'switch', reorder='switch', coreout=22 $
$'bouncur', corein=5 $
$'rotate', angpts=-l, angle=129.S,59.7, axcos=O.,0..,l. $
$'switch', reorder~'switch', coreout=24 $
$ bouncur', corein=5 $
$'rotate', angpts=-l, angle=218.7,129.8, axcos=O.,O.,l. $

$ 'switch', reorder='switch', coreout=21 $
$ 'edgecur', edge='lowerl', corein=4 $
$ 'edgecur', edge='upperl', corein=2 $
$ 'edgecur', edge='lower2', corein=l $
$ 'edgecur', edge='upper2l, corein=3 $
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$ 'transur', coreout=25 $
$ 'trans', origin=O.,0.,80., coreout=26 $
$ 'trans', corein=2l,-26, origin=250.,200.,0.,

coreout=21,-26 $
$ 'combine', content='yes', corein=21,-26, fileout=l $
$ 'combine', head='yes', form='e', triad='yes',

corein=21,-26, fileout=2 $
$ 'combine', form='plot3d', corein=21,-26, fileout=3,

filnam='plugl.so' $
$ 'end' $

Plug No. 2

$ 'point', point=l, r=2.,O.,0. $
$ 'point', point=2, r=0.,2.,0. $
$ 'point', point=3, r=-2.,O.,O. $
$ 'point', point=4, r=0.,-2.,0. $
$ 'point', point=5, r=2., 0., 40. $
$ 'point', point=6, r=O..,2.,40. $
$ 'point', point=7, r=-2.,0.,40. $
$ 'point', point=8, r=0.,-2.,40. $
$ 'setnum', segment=l, points=6 $
$ 'setnum', segment=3, points=9 $
$ 'setval', number=l, value=.04 $
$ 'conicur', points=-l, type='circle', radius=2.,

angle=-125.,-32., coreout=1 $
$ 'conicur', points=-l, type='circle', radius=2.,

angle=-32. ,32 *, coreout=2 $
$ 'cc'nicur', points=-l, type='circle', radius=2.,

angle=125.,32., coreout=3 $
$ 'conicur', points=-l, type='circle', radius=2.,

angle=235. ,125 *, coreout=4 $
$ 'line', points=-3, r1=5, r2=1, space=-l $
$ 'switch', reorder='reversel', coreout=5 $
$ 'bouncur', corein=5 $
$ 'rotate', angpts=-1, angle=-125.,-32., axcos=0.,0.,l.$
$ 'switch', reorder='switch', coreout=23 $
$ 'bouncur', corein=5 $
$ 'rotate', angpts=-l, angle=-32.,32., axcos=0.,0.,l. $
$ 'switch', reorder='switch', coreout=22 $
$ 'bouncur', corein=5 $
$ 'rotate', angpts=-l, angle=125.,32., axcos=0.,0.,l. $
$ 'switch', reorder='switch', coreout=24 $
$ 'bouncur', corein=5 $
$ 'rotate', angpts=-l, angle=235.,125., axcos=O.,0.,l. $
$ 'switch', reorder='switch', coreout=21 $
$ 'edgecur', edge='lowerl', corein=4 $
$ 'edgecur', edge='upperl', corein=2 $
$ 'edgecur', edge='lower2', corein=l $
$ 'edgecur', edge='upper2', corein=3 $
$ 'transur', coreout=25 $
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$ 'trans', origin=O.,O.,40., coreout=26 $
$ 'trans', coreiri=21,-26, origin=600.,250.,O.,

coreout=2l,-26 $
$ 'combine', content='yes', corein=21,-26, fileout=1 $
$ 'combine', head='yes', form='e', triad='yes',

corein=21,-26, fileout=2 $
$ 'combine', form='plot3d', corein=21,-26, fileout=3,

filnam='plug2.so' $
$ 'end' $

Grid Generation Data

The data for the portion of EAGLE that generates the

grid from the produced surfaces is the same for each piece,

except for the numbers on the faces and the output file

names. This data for the first 0 grid is now given.

$ 'initial', kstore= 'cores, accpar='optimum', itmax=lOO,
tol=.OOOO0l, contyp='initial' $

$ 'file', file=l1 , all=='yes'$
$ 'block'$
$ 'point', point=l, locat=l,l,l $
$ 'point', point=2, opoint=1, segment=55, direct=1, ndex=l $
$ 'point', point=3, opoint=2, segment=55, direct=2, ndex=2 $
$ 'point', point=4, opoint=3, segment=55, direct=-l,

ndex=l $
$ 'point', point=5, opoint=1, segment=53, direct=3, ndex=2 $
$ 'point', point=6, opoint=5, segment=56, direct=l, ndex=1 $
$ 'point', point=7, opoint=6, segment=56, direct=2, ndex=2 $
$ 'point', point=8, opoint=7, segment=56, direct=-l,

ndex=l $
$ 'size', size=7 $
$ 'segment', segment=51, start=l, end=8, class='fix' $
$ 'segment', segment=52, start=2, end=7, class='fix' $
$ 'segment', segment=53, start=l, end=6, class='fix' $
$ 'segment', segment=54, start=4, end=7, class='fix' $
$ 'segment', segment=55, start=l, end=3, class='fix' $
$ 'segment', segment=56, start=5, end=7, class='fix' $
$ 'store', file=14, outer='plot3d', filnam='aq3.egl $
$ 'end' $
$ 'error'$
$ 'end' $

The point and segment (face) numbers are shown in the topo-

logical configuration given in Figure 80.
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Figure 80. Topology for Grid Program

FEM Grid Preparation Data

The question-and-answer sequence for the program to

combine the four separate grids into the proper FEM format

is now given.

COMMAND?
combine

NUMBER OF FILES
4

FILE NAME NO. 1 ?
aq3.egl

FOR BLOCK 1 MATERIAL TYPE NUMBER, THETA, PHI, AND PSI?
1 0 0 0
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REMOVING DUPLICATE NODES, N = 1000 NUMNP = 0
REMOVING DUPLICATE NODES, N = 2000 NUMNP = 0
REMOVING DUPLICATE NODES, N = 3000 NUMNP = 0
REMOVING DUPLICATE NODES, N = 4000 NUMNP = 0
REMOVING DUPLICATE NODES, N = 5000 NUMNP = 0
REMOVING DUPLICATE NODES, N = 6000 NUMNP = 0

FILE NAME NO. 2 ?
q4.egl

FOR BLOCK 1 MATERIAL TYPE NUMBER, THETA, PHI, AND PSI?
1 0 0 0

REMOVING DUPLICATE NODES, N = 1000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 2000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 3000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 4000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 5000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 6000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 7000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 8000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 9000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 10000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 11000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 12000 NUMNP = 6500
REMOVING DUPLICATE NODES, N = 13000 NUMNP = 6500

FILE NAME NO. 3 ?
plug3.egl

FOR BLOCK 1 MATERIAL TYPE NUMBER, THETA, PHI, AND PSI?
1 0 0 0

REMOVING DUPLICATE NODES, N = 1000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 2000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 3000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 4000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 5000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 6000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 7000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 8000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 9000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 10000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 11000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 12000 NUMNP = 12850
REMOVING DUPLICATE NODES, N = 13000 NUMNP = 12850

FILE NAME NO. 4 ?
plug4.egl

FOR BLOCK 1 MATERIAL TYPE NUMBER, THETA, PHI, AND PSI?
1 0 0 0
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REMOVING DUPLICATE NODES, N = 1000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 2000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 3000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 4000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 5000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 6000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 7000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 8000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 9000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 10000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 11000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 12000 NUMNP = 13122
REMOVING DUPLICATE NODES, N = 13000 NUMNP = 13122

FINAL NUMBER ON NODES = 13266

COMMAND?
bandwidth

INITIAL MAXIMUM DIFFERENCE = 12881

ITERATION = 1 BEST MAXIMUM DIFFERENCE = 1436
ITERATION = 7 BEST MAXIMUM DIFFERENCE = 1413
ITERATION = 8 BEST MAXIMUM DIFFERENCE = 1375
ITERATION = 9 BEST MAXIMUM DIFFERENCE = 1331
ITERATION = 10 BEST MAXIMUM DIFFERENCE = 1288
ITERATION = 11 BEST MAXIMUM DIFFERENCE = 1252
ITERATION = 12 BEST MAXIMUM DIFFERENCE = 1222
ITERATION = 13 BEST MAXIMUM DIFFERENCE = 1220

COMMAND?
bc

BLOCK NUMBER, IIB, JIB, KIB, 12B, J2B, K2B, IBC, BV?
1 6 13 1 11 13 25 1 0

COMMAND?
bc

BLOCK NUMBER, IIB, JIB, KIB, 12B, J2B, K2B, IBC, BV?
2 6 13 1 11 13 25 1 0

COMMAND?
bc

BLOCK NUMBER, IIB, JIB, KIB, 12B, J2B, K2B, IBC, BV?
1 1 1 17 21 1 25 -2 -. 4

COMMAND?
bc
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BLOCK NUMBER, IIB, JIB, KIB, 12B, J2B, K2B, IBC, BV?
2 1 1 9 21 1 25 -2 -. 2

COMMAND?
out

OUTPUT FILE NAME FOR SEEPAGE/GROUNDWATER MODEL (WITHOUT
EXTENSIONS)?
aqbs

TITLE CARD?
Two Wells in an Aquifer

DATUM?
120

KI, K2, AND K3 FOR MATERIAL TYPE 1 ?
.1 .1 .1

COMMAND?
end

FEM Grid

Portions of the FEM grid data are now given.

Two Wells in an Aquifer
13266 12120 1 480 120.00

1 0.10 0.10 0.10
1 0 249.00 199.95 0.00 0.00
2 0 248.50 199.95 0.00 0.00
3 0 249.07 199.64 0.00 0.00
4 0 249.00 199.95 8.07 0.00
5 0 249.03 200.25 0.00 0.00
6 0 249.36 199.87 0.00 0.00
7 0 248.57 199.44 0.00 0.00
8 0 248.36 199.94 8.11 0.00
9 0 248.53 200.45 0.00 0.00
10 0 247.25 199.95 0.00 0.00

13261 0 602.70 250.97 111.93 0.00
13262 -1 601.89 250.66 120.00 0.00
13263 0 602.78 250.32 120.00 0.00
13264 0 604.78 250.57 120.00 0.00
13265 -1 601.70 251.06 120.00 0.00
13266 0 602.68 250.96 120.00 0.00
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1 394 287 395 469 493 378 505 568 1
0.00 0.00 0.00

2 287 200 288 395 378 278 385 505 1
0.00 0.00 0.00

3 200 132 201 288 278 197 285 385 1
0.00 0.00 0.00

4 132 179 263 201 197 262 366 285 1
0.00 0.00 0.00

5 179 251 290 263 262 354 398 366 1
0.00 0.00 0.00

6 251 169 202 290 354 252 291 398 1
0.00 0.00 0.00

7 169 106 133 202 252 170 203 291 1
0.00 0.00 0.00

8 106 60 81 133 170 107 134 203 1
0.00 0.00 0.00

9 60 29 44 81 107 61 82 134 1
0.00 0.00 0.00

10 29 11 20 44 61 30 45 82 1
0.00 0.00 0.00

12113 9794 10100 10371 10080 10099 10388 10646 10370 1
0.00 0.00 0.00

12114 10100 10389 10647 10371 10388 10662 10909 10646 1
0.00 0.00 0.00

12115 10389 10663 10910 10647 10662 10923 11163 10909 1
0.00 0.00 0.00

12116 9447 9772 10010 9687 9771 10079 10309 10003 1
0.00 0.00 0.00

12117 9772 10080 10315 10010 10079 10370 10598 10309 1
0.00 0.00 0.00

12118 10080 10371 10603 10315 10370 10646 10872 10598 1
0.00 0.00 0.00

12119 10371 10647 10876 10603 10646 10909 11134 10872 1
0.00 0.00 0.00

12120 10647 10910 11137 10876 10909 11163 11385 11134 1
0. 0. 0.

4168 3860 4176 4500 -0.40
3860 3576 3878 4176 -0.40
3576 3303 3594 3878 -0.40
3303 3535 3836 3594 -0.40
3535 3828 4142 3836 -0.40
3828 3529 3829 4142 -0.40
3529 3240 3530 3829 -0.40
3240 2958 3241 3530 -0.40

12885 12775 12895 12988 -0.20
12775 12892 12993 12895 -0.20
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12892 12991 13073 12993 -0.20
12991 13045 13110 13073 -0.20
13045 13117 13166 13110 -0.20
13117 13172 13208 13166 -0.20
13172 13213 13238 13208 -0.20
13213 13242 13257 13238 -0.20
13242 13260 13265 13257 -0.20
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Analysis of Plane Frame Structures (CFRAME)
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linear Conduits/Culverts (CURCON)
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Instruction Report K-80-4 A Three-Dimensional Stability Analysis/Design Program (3DSAD)
Report 1: General Geometry Module Jun 1980
Report 3: General Analysis Module (CGAM) Jun "9$82
Report 4: Special-Purpose Modules for Dams (CDAMS) Aug 1983
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of Inverted-T Retaining Walls and Floodwalls (TWDA)

Instruction Report K-80-7 User's Reference Manual: Computer Program for Design and Dec 1980
• Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)

Technical Report K-80-4 Documentation of Finite Element Analyses
Report 1: Longview Outlet Works Conduit Dec 1SW
Report 2: Anchored Wall Monolith, Bay Springs Lock Dec 1930

Technical Report K-80-5 Basic Pile Group Behavior Dec 1930

Instruction Report K-81-2 User's Guide: Computer Program for Design and Analysis of Sheet
Pile Walls by Classical Methods (CSHTWAL)

Report 1: Computational Processes Feb 1981
Report 2: Interactive Graphics Options Ma.r 1981

Instruction Report K-81-3 Validation Report: Computer Program for Design and Analysis of Feb 1931
Inverted-T Retaining Walls and Floodwalls (TWDA)

Instruction Report K-81-4 User's Guide: Computer Program for Design and Analysis of uar 1981
Cast-in-Place Tunnel Unings (NEWTUN)

Instruction Report K-81-6 Jser's Guide: Computer Program for Optimum Nonlinear Dynamic Mar 1981
Design of Reinforced Concrete Slabs Under Blast Loading
(CBARCS)

Instruction Report K-81-7 User's Guide: Computer Program for Design or Investigation of Mar 1981
Orthogonal Culverts (CORTCUL)

Instruction Report K-81 -9 User's Guide: Computer Program for Three-Dimensional Analysis Aug 1981
of Building Systems (CTABS80)

Technical Report K-81 -2 Theoretical Basis for CTABS80: A Computer Program for Sep 1981
Three-Dimensional Analysis of Building Systems

Instruction Report K-82-6 User's Guide: Computer Program for Analysis of Beam-Column Jwn 192
Structures with Nonlinear Supports (CBEAMC)
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Instruction Report K-82-7 User's Guide: Computer Program for Bearing Capacity Analysis Jun 1982
of Shallow Foundations (CBEAR)

Instruction Report K-83-1 User's Guide: Computer Program with Interactive Graphics for Jan 1983
Analysis of Plane Frame Structures (CFRAME)

Instruction Report K-83-2 User's Guide: Computei Program for Generation of Engineering Jun 1983
Geometry (SKETCH)

Instruction Report K-83-5 User's Guide: Computer Program to Calculate Shear, Moment, Jul 1983
and Thrust (CSMT) from Stress Results of a Two-Dimensicnal
Finite Element Analysis

Technical Report K-83-1 Basic Pile Group Behavior Sep 1983

Technical Report K-83-3 Reference Manual: Computer Graphics Program for Generation of Sep 1983
. Engineering Geometry (SKETCH)

Technical Report K-83-4 Case Study of Six Major General-Purpose Finite Element Programs Oct 1983

Instruction Report K-84-2 User's Guide: Computer Program for Optimum Dynamic Design Jan 1984
of Nonlinear Metal Plates Under Blast Loading (CSDOOR)

Instruction Report K-84-7 User's Guide: Computer Program for Determining Induced Aug 1984
Stresses and Consolidation Settlements (CSETT)

Instruction Report K-84-8 Seepage Analysis of Confined Flow Problems by the Method of Sep 1984
Fragments (CFRAG)

Instruction Report K-84-1 1 User's Guide for Computer Program CGFAG, Concrete General Sep 1984
Flexure Analysis with Graphics

Technical Report K-84-3 Computer-Aided Drafting and Design for Corps Structural Oct 1984
Engineers

Technical Report ATC-86-5 Decision Logic Table Formulation of ACI 318-77, Building Code Jun 1986
Requirements for Reinforced Concrete for Automated Con-
straint Processing, Volumes I and II

Technical Report ITL-87-2 A Case Committee Study of Finite Element Analysis of Concrete Jan 1987
Flat Slabs

Instruction Report ITL-87-1 User's Guide: Computer Program for Two-Dimensional Analysis Apr 1957
of U-Frame Structures (CUFRAM)

Instruction Report ITL-87-2 User's Guide: For Concrete Strength Investigation and Design May 19S7
(CASTR) in Accordance with ACI 318-83

Technical Report ITL-87-6 Finite-Element Method Package for Solving Steady-State Seepage May 19S,
Problems

Instruction Report ITL-87-3 User's Guide: A Three Dimensional Stability Analysis/Design Jun 198I7
Program (3DSAD) Module

Report 1: Revision 1: General Geometry Jun 197
Report 2: General Loads Module Sep 1989
Report 6: Free-Body Module Sep 1989
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Instruction Report ITL-87-4 User's Guide: 2-D Frame Analysis Link Program (LINK2D) Jun 1987

Technical Report ITL-37-4 Finite Element Studies of a Horizontally Framed Miter Gate Aug 1987
Report 1: Initial and Refined Finite Element Models (Phases

A, B, and C), Volumes I and II
Report 2: Simplified Frame Model (Phase D)
Report 3: Alternate Configuration Miter Gate Finite Element

Studies-Open Section
Report 4: Alternate Configuration Miter Gate Finite Element

Studies-Closed Sections
Report 5: Alternate Configuration Miter Gate Finite Element

Studies-Additional Closed Sections
Report 6: Elastic Buckling of Girders in Horizontally Framed

Miter Gates
Report 7: Application and Summary

Instruction Report GL-87-1 User's Guide: UTEXAS2 Slope-Stability Package; Volume I, Aug 1987
User's Manual

Instruction Report ITL-87-5 Sliding Stability of Concrete Structures (CSLIDE) Oct 1987

Instruction Report ITL-87-6 Criteria Specifications for and Validation of a Computer Program Dec 1987
for the Design or Investigation of Horizontally Framed Miter
Gates (CMITER)

Technical Report ITL-87-8 Procedure for Static Analysis of (,ravity Dams Using the Finite Jan 1988
Element Method - Phase la

Instruction Report ITL-88-1 User's Guide: Computer Progra-i for Analysis of Planar Grid Feb 1988
Structures (.GU:RID)

Technical Report ITL-88-1 Development of Design Formulas for Ribbed Mat Foundations Apr 1988
on Expansive Soils

Technical Report ITL-88-2 User's Guide: Pile Group Graphics Display (CPGG) Post- Apr 1988
processor to CPGA Program

Instruction Report ITL-88-2 User's Guide for Design and Investigation of Horizontally Framed Jun 1988
Miter Gates (CMITER)

Instruction Report ITL-88-4 User's Guide for Revised Computer Program to Calculate Shear, Sep 1988
Moment, and Thrust (CSMT)

Instruction Report GL-87-1 User's Guide: UTEXAS2 Slope-Stability Package; Volume II, Feb 1989
Theory

Technical Report ITL-89-3 User's Guide: Pile Group Analysis (CPGA) Computer Group Jul 1989

Technical Report ITL-89-4 CBASIN-Structural Design of Saint Anthony Falls Stilling Basins Aug 1989
According to Corps of Engineers Criteria for Hydraulic
Structures; Computer Program X0098
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Technical Report ITL-89-5 CCHAN-Structural Design of Rectangular Channels According Aug 1989
to Corps of Engineers Criteria for Hydraulic
Structures; Computer Program X0097

Technical Report ITL-89-6 The Response-Spectrum Dynamic Analysis of Gravity Dams Using Aug 1989
the Finite Element Method; Phase i

Contract Report ITL-89-1 State of the Art on Expert Systems Applications in Design, Sep 1989
Construction, and Maintenance of Structures

instruction Report ITL-90-1 User's Guide: Computer Program for Design and Analysis Feb 1990
of Sheet Pile Walls by Classical Methods (CWALSHT)

Technical Report ITL-90-3 Investigation and Design of U-Frame Structures Using May 1990
Program CUFRBC

Volume A: Program Criteria and Documentation
Volume B: User's Guide for Basins
Volume C: User's Guide for Channels

Instruction Report ITL-90-6 User's Guide: Computer Program for Two-Dimensional Analysis Sep 1990
of U-Frame or W-Frame Structures (CWFRAM)

Instruction Report ITL-90-2 User's Guide: Pile Group-Concrete Pile Analysis Program Jun 1990
(CPGC) Preprocessor to CPGA Program

Technical Report ITL-91-3 Application of Finite Element, Grid Generation, and Scientific Sep 1990
Visualization Techniques to 2-D and 3-D Seepage and
Groundwater Modeling


